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Anomalous Optical Homogeneous Linewidths in Glasses
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The homogeneous linewidth is calculated for resonant optical transitions in glasses.
The width is due to modulation of the optical levels caused by coupling to the diagonal
as well as off-diagonal elements of the two-level modes. The main contribution arises
from diagonal modulation of abundant but weakly coupled two-level modes. For a Qat
density of states of two-level modes and a dipole-quadrupole coupling a large T'" be-
havior is found in good agreement with recent data.

PACS numbers: 78.55.Hx, 61.40.Df, 71.55.Ht

Recent data of fluorescence homogeneous line-
widths in glasses show anomalously large magni-
tudes and unusual temperature dependence com-
pared with those of crystalline hosts. " The line-
width is proportional to T&'" with y = 1.8 (7& T
& 80 K) for Eu"-doped silicate glass' and y = 1.85
and y =1.88 (6& T& 300 K) for Pr'-doped BeF,
and Geo, glasses, respectively. ' The anomaly is
believed'~ to be due to the so-called two-level
modes (TLM) present in amorphous hosts. '" The
purpose of this paper is to present a theory for
this phenomenon at low temperatures.

Recently the effect of modulation of the optical
levels via coupling to the off-diagonal elements of
TLM has been studied. ' The modulation occurs
as a result of a rapid phonon-assisted tunneling
motion, between two local potential wells, of an
atom (or a group of atoms) which is coupled to the
optical ion through multipolar interaction. (The
frequency is I'h '-4x 10' Hz for Ek~ '= 5 K; E
is the two-level energy separation. ) A quadratic
temperature dependence was obtained. However,
a very large density of states was necessary to

!
fit the data. ' In this paper I examine the effect of

the coupling of the optical levels with the diagonal
(together with off-diagonal) elements of TLM for
arbitrary coupling strengths. I find that the di-
agonal modulation (DM) is much more important
than the off-diagonal modulation (ODM) and that
dominant contributions to fluorescence linewidth
(~~) arise from the abundant weakly coupled TLM,
the coupling strengths ( V) of which lie between the
small damping (I') of the TLM and two-level sep-
aration (i.e., F«V«E). Each two-level system
in this range contributes an amount I' to ~co in-
dependent of V in contrast to the recent "pertur-
bation" (line narrowing) result of Seizer et al. '
where a contribution V'/I' was found. I find
the latter behavior only in the true perturbation
limit V« I'. The contribution from these ex-
tremely weakly coupled TLM is negligible.

The resonant optical transition occurs between
the ground (n=0) and excited (n= 1) levels of an
impurity ion. The transition energy, namely, the
resonant photon energy SQro= cy E'o is much larg-
er than the Debye acoustic phonon energy (h"D)
and the energy (E) of TLM. The Hamiltonian de-
scribing an optical ion interacting with a single
two-level system in the phonon field is given by

H= Q e„g„tg„+2Eo'+—, QQV„g„'l'„o +Qk~, (&,+2)+2+f scr,
n=0 n=O&

where the fermion creation and annihilation oper-
ators g„t and g„describe the electronic states
and & are the Pauli matrices. The index e is
summed over n =~, +, and —,with o' =o "&io'.
The first three terms in (1) describe the ion, the
two-level system, and the interaction between
them, respectively. The latter contains the DM
(V„') as well as ODM(V„'). The last two terms in
(1) describe the phonon energies and the interac-
tion of the two-level system with the strain.
Eventually contributions from all TLM will be
summed.

The energy E is related to the energy asym-

metry ~ of the wells and the overlap energy t/2
by E=(~'+t')'~'. '" The coefficients f are given
by f'=Bs/E and f' =Bt/2E where B is the differ-
ence in the deformation potential constants for the
two unperturbed wells. Similarly, V„'= C„'/E
and V„'=C„t/2E where C„ is the difference in the
coupling strengths between the nth optical level
and the two unperturbed wells. The quantities e
and f are of the order of E so that f' -f'-B and
V' V Cn n n'

The spectral line shape is given by the imagin-
ary part of the Fourier transform [E(&u)] of the
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retarded Green's function'

E(t)=-~~(t) ([(!I,4. )(t), 4.0, ]&,

(2)

where 6 and the angular brackets denote the unit
step function and thermal average, respectively,
and (g, !!I,t)(&) is in the Heisenberg representa-
tion. The square brackets represent the commu-
tator. The spectral function is evaluated rigor-
ously by employing the equation of motion method
for arbitrary coupling strengths V„and a small
strain. The mathematical details of the calcula-
tion are complicated and will be presented else-
where. However, the results can be interpreted
in a simple way as will be shown below.

For this purpose the first three terms in (1}
are diagonalized for the occupation of the nth
level yielding a doublet ~„+ &E„with

E„=[(E+ v ')'+ 4( v„')']".

~oted as IIT„~ p„) in (1) is then rewritten in
terms of these new diagonal bases (to be desig-
nated as jn, +)) as

&~, * IIf~L~i-I~ I+ +&

=E (f'V. '-f'(E V.')].
n

The optical line shape is Lorentzian and the
width (a&u) equals the sum of the widths of the
ground- and excited-state sublevels involved in
the transition. The total fluorescence linewidth
is then a properly averaged sum of these individ-
ual widths arising from four possible optical
transitions [cf. (5)]. At this point it is useful
to note that the observed inhomogeneous line-
width in a typical glass" ' is of order of 100
cm ' and the spectral shifts ~,+E, can be par-
tially responsible.

The widths of the sublevels !n, o. =+) due to one-
phonon-assisted processes are given by

'v„"- '(E+v„') '
r„"=2~+ " "

! (n, +n! e!n, &!'5(R(u, -E„),
a n

(4)

where o.=+ 1 will be assigned to a. =+ for the strain matrices in (4) for emission and absorption proc-
esses, respectively. The ODM [i.e., the first term in the curly brackets in (4)] was obtained by Lyo
and Orbsch, ' while the DM (i.e. , the second term) is a new effect. The total observed optical homoge-
neous linewidth equals

~~=+ g p p s, (r,"+r, '), (5)

where the first sum denotes summing over all TLM, and

p„= ,' exp(- n pE,—/2)/cosh( pE, /2)

(p =k~T) is the thermal occupation probability for the ground-state doublet. The transition probabil-
ity S„.„is given by

S.,„=!(1, n ! 0, n)!'=-,'(E~, +n n[(V, +E)(V, +E)+4V, 'V, '])/E,E, .
Note that the transition vanishes between differ-
ent "spin" states (i.e., uo. '=-1) in the limit V,

(or V, ') =0.
We expect that only a small number of TLM are

close to the optical ion under consideration.
Most of them are distant and thus weakly coupled.
For these abundant, weakly coupled TLM (!V"!
&El, DM is dominant over ODM in view of the
fact that f'-f' and V'- V'. Because the magni-
tude of the quantity in the curly brackets of (4)
is of the order of f"for all TLM, the main con-
tribution to 4~ arises from these weakly coupled
TLM and the ODM will be neglected (i.e., V„'=0)
in (4). Even in the opposite limit (i.e., V„&E)
this approximation yields a rough order-of-mag-
nitude estimate. A quantitative justification of

this approximation will be given later.
After we set V„'= V„'=0 in (4) whereby S

(!}is the Kronecker delta) in (5), the con-
tribution to the width (E~}from a two-level sys-
tem then equals the thermal average of the widths
of the two levels of the TLM and is, remarkably,
independent of V (i.e., the ion-TLM separation) !
Of course this cannot be true for an arbitrarily
weak modulation. To investigate this question
let us evaluate the spectral function for DM (V'
—= 0, V'=- V, ' —V, 'g0). We find

where 1, = 1 o'+ I and Q=ku —huo. In the lim-
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it I V'l»hv '(=- I'++ I' ), we find from (7)

in agreement with the analysis given above. In this regime the levels of the optical ion and TLM are
strongly coupled [cf. (2)] and locked together. In the opposite extremely weak-coupling limit! V'!
(eke ', we find

E(~) = [0——,'V'(p+ —p ) ——,'i(V')'8 'r sech'(pE/2)] ',
which agrees with the recent motional-narrowing
result of Seizer et al. ' but disagrees with the re-
sult of Reinecke. ' The interaction is perturba-
tive. The relaxation time 7 of TLM is not long
enough to form a coherent coupled state [cf. (2)].
Note that the line is shifted by the average amount
of modulation. The contribution, however, is
negligible because (V')' decays rapidly with range
in contrast to the case V'&ST ' where it is inde-
pendent of V'.

The linewidth is then given by

&~=2)dE p(E) J d'rp p„(E)(r (E)),„,

1 z . "3~(B'),„
~ max ~max M~s (10)

Here q, M, and e, are respectively a constant of
order unity, the mass of the unit cell, and sound
velocity. The quantities A. &A. &A. „determine
the upper and lower bounds' of the overlap inte-
gral f ~e . For typical parameters' q= 1, (B')„
=1 (eV)', A, =5, X~,„=15, M=100 amu (Ge02),
and v, =3 x10' cm/sec, I estimate D2 10x' eV.
The final result Eq. (11) does not depend on the
value of D sensitively.

For a multipolar form of interaction, the maxi-
mum cutoff range (r, ) of the spatial integration
in (9) is a decreasing function of E and is deter-
mined by the condition ! V'!= b/r, ' = ( I (E)
+ I' (E)),„. Assuming a flat density of states for
TLM, we find at temperatures much below the
cutoff energy of TLM

Ea =+~ v Dplm~I, (4b/vD)'i'(T/OD) i', (11)

(9)

where p(E} is the density of states per volume of
TLM. The E dependence is specifically shown for
p„and I' (= I'„) in connection with Eqs. (4) and
(5). The width of TLM averaged over the random
parameters 4 and t is given by'

(r"),„=—,'~(E/n~, )'D[n, + (u + 1)/2],
where n~ is the boson function and

QQ) = 7.9x].0 T ' cm (12)

for T in kelvins. Defining a to be the approxi-
mate molecular dimensions of TLM and the opti-
cal ion and e the unit electronic charge, and set-
ting b = e'a', we find a = 3.3 A. The result in (12}
also explains roughly the Pp &g resonant transi-
tion in Pr'-doped BeF, glass' and the 'D, -'E,
resonant transition in Eu'-doped silicate glass'
at low temperatures. At high temperatures (T
& 50 K), the theoretical values deviate gradually
from the data, yielding, for example, b.~=17.2
cm ' compared to the observed value 4' =40
cm ' at 300 K for GeO, glass. In this tempera-
ture range, a two-phonon Raman contribution
(~T') seems to be sufficient to explain the data. '
At high temperatures, contributions from strong-
ly coupled TLM are not negligible and the Debye
approximation is poor. Also, the validity of a
constant density of states of TLM is unclear.

The relative contribution from strongly cou-
pled TLM (V &E) is small at low temperatures
because of their scarcity; for the parameters
used above, the cutoff radius for the spatial inte-
gration in (9) is given by r, = 102 A at 20 K (=E/
k B ), while the strongly coupled TLM (i.e., !V'!
&E) lie within the radius r =24 A. The relative

!where 8 D is the Debye temperature and

e Xs-a/s
Is (ex+1)1+&Is(ex I)&-~is

0

For a general p(E) ~E", the temperature depen-
dence is 4~~T"" ' '. It is seen that dipole-
quadrupole interaction (s =4) yields 4~ ~ T'"
with p, =0 as compared to the observed behavior"
Zw ~ T &" '""'&. At temperatures above the
cutoff energy of TLM, the width increases much
more slowly, as T'". I fit the data at 20 K (b.&u

= 0.15 cm ') for the 'P, -'H, resonant transition
in Pr'-doped GeO, glass, ' using OD =300 K and

p = 2.0x10"/eV cm' (deduced from Anderson,
Halperin, and Varma' and the specific-heat data
of Keller and Pohl') and choosing b = 5.1 x10' eV
A (Ref. 4):
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fraction of the contribution from the strongly
coupled TLM is then 0.8%, justifying the weak-
coupling approximation. This argument is fur-
ther strengthened by the fact that the approxi-
mate magnitude of the integrand for the spatial
integration in (9) is smaller in the strong-coup-
ling region than in the weak-coupling region be-
cause of the Boltzmann factors, except for the
S, transition to be considered below.

A good feature of the present theory is that the
optical linewidth is explained in terms of the
weakly coupled, nearly isolated TLM, for which
the model is well understood. Nevertheless, I
mention here an interesting problem that the
strongly coupled TLM may introduce to (5). Of
particular interest therein is the contribution of
the transition from ( 0, -) to

~ 1, + ) which be-
comes significant (i.e., s, -1) for strongly
coupled TLM at all temperatures. For the other
processes, the Boltzmann factors cut off the con-
tributions from the strongly coupled TLM (with
E„»kB T). The quantity I', ' in (5) contains a
spontaneous part and makes a temperature-inde-
pendent contribution to Aced at the wings of the in-
homogeneously broadened line. This contribution
is difficult to calculate because we do not have a
reliable model for these distorted TLM. I men-
tion here merely that the data show no appreciable
temperature -independent part, "indicating that
it is a small effect.

For a general density of states (~E") of TLM
and coupling (o-r '), the present result predicts
a~ o: T' " ' ~' and can only determine the rela-
tionship between p. and s from the optical data.
The density of states of the low-energy (below 1
cm ') TLM is known to be constant. ' There
exists, however, a large uncertainty as to its
nature for higher energy TLM. I have deter-
mined s =4 for the case p=0. This conclusion
is further supported by the recent low-tempera-
ture data of Macfarlane and Shelby" who obtained

A~ = 20 MHz at 1.6 K in a Eu-doped silicate glass
using a hole-burning technique. This datum point
lies on the line extrapolated from the data of
Seizer et al. ' in a logics-logT plot, indicating
that the power-law behavior continues down to
1.6 K. An interesting way of testing the theory
is to alter the nature of the coupling by polarizing
(depolarizing) the TLM by doping (undoping) the
sample with donor impurities such as OH ions. "
A more detailed account of this work will be pub-
lished elsewhere.
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