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in accord with the theoretical estimate given
above and elsewhere.® The strong line in Fig.
2(c) at 1300 keV corresponds well to the estimate
given above for the %z, proton and we would ten-
tatively make that identification. More system-
atic data will be needed to make firm assign-
ments throughout the high-spin regions, but the
observation of specific alignment frequencies in
an unresolved spectrum represents a significant
step in understanding nuclei at the highest angu-
lar momentum.
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The solution of Dirac-type equations by the linear expansion technique suffers from
variational instability due to difficulties in obtaining accurate matrix representations of
the &-P operator in conventional basis sets. A new matrix representation of &-p is pro-
posed which resolves the problem. The method has been successfully applied in numeri-

cal calculations.

PACS numbers: 31.15.+q, 31.30.Jv

Fully relativistic quantum mechanical electron-
ic structure calculations are usually based on
Dirac-Coulomb-—type Hamiltonians,®

H=3 () + 33 &0, ))

i>j

with
hp=c?B'm+ca -p+V.

For atomic systems, as a result of central field
symmetry, quite close approximations to the
eigenvalue equation H¢=Ey can be obtained by
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one-dimensional numerical integration, for in-
stance within the independent-particle model.?
For molecular multicenter systems one is forced
for computational reasons to approximate the
wave function by expanding it linearly into some
finite basis set. However, in the relativistic
case variational instability arises which does not
occur in the expansion of the Schrddinger opera-
tor. Since the Dirac one-electron Hamiltonian
hp is not bounded from below, the calculated en-
ergy may be higher or lower than the exact one.
Furthermore, calculations for atoms?® and par-
ticularly for molecules® have shown that the en-
ergy depends sensitively on small changes in the
basis set. Consequently, it is very difficult to
obtain any reliable relativistic energy correc-
tions. This variational instability has already
been discussed**’® and methods to cure the so-
called “finite basis set disease”® have been
proposedi®*+%#5:7 However, they either require
involved computation®:® or have been subject to
criticism.® Here a simple alternative is pro-
posed which overcomes these difficulties, Its
efficiency is demonstrated by test calculations
on H and H,",

The problems with finite-basis approximations
of the one-particle Dirac equation

(V+ca~§+czﬁ’m)¢ =Ey (1)

arise® mainly from the representation of the rela-
tivisite kinetic energy operator a- 5 Two argu-
ments lead us to introduce an improved type of
representation.

First, if the Dirac equation is derived from
the Klein-Gordon equation by linearization of the
kinetic energy, the operator a- ﬁ is defined to
fulfill, among others, the relation

(a-p)a-p)T=p2, (2)
with @+ p=(a-p)T. Now, for finite (orthonormal)
basis sets {%} the resolution of the identity holds
only approximately: 3., |2) (k]| #1, so that

(i |p*l)=<il(a-p)a p)|j)

=(i|(a-p)-1-(a-p)1j)
# 2n (il @ -plR) (Rl @ -plj).

Hence, denoting matrix representations by square
brackets, we have

la-plla-B] T#[5?],

contrary to Eq. (2). We introduce a modified
representation [ @ *p] ,,.q Which is forced to ful-

(2a)
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fill the same relation as the operator (5 -ﬁ),
[a'iﬂmod[a'ﬁ] modT'_‘[Ez]- (2b)

Second, in the nonrelativistic limit ¢ —«, one
obtains from Eq. (1) for the so-called positive-
energy solutions with energy E .,

{V+(G-p)T-p)/2m}y,=E y., 3)

where ¢, stands for the upper two components of
the four -component spinor

= ¢+>
v=(32)-
Since for the two-by-two operators,
(6-p)(G-p) T=p> @

is valid, Eq. (3) is identical with the Schrédinger
equation. Again, the operator equation no longer
holds for finite basis sets, where in general

[g-plld-pl#[p?. (4a)
As a consequence of Eq. (4a) the finite-basis-set
representation of the Dirac equation fails to give

the proper nonrelativistic limit, Furthermore,
since

tr(( 5-p][G-p]1" <trlp?],

the resulting kinetic and consequently total ener-
gies*%? are too low. This imbalance is removed
and the proper nonrelativistic limit is reestab-
lished by the introduction of the modified matrix
representation

[6'5] mod[a°§]modT=l.§2], (4b)

which is consistent with Eq. (2b) if

->

- [0] [0°5]mod
Leplma=|(5.57, 007 (0]

It is an essential feature of our approach that as
a result of condition (4b) for any basis the rela-
tivistic energy converges to the nonrelativistic
one for ¢ -, whereas in the quasinonrelativistic
approach® % this limit is obtained only for com-
plete basis sets.

Equations (2b) or (4b) define the modified repre-
sentation only up to a unitary matrix. As an addi-
tional condition to fix [ 0+p |0 We impose that
the Euclidean norm of the relative difference® of
[G+P lmoa and [0 +p ] should be as small as possi-
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TABLE 1. 1S,/, energy and relativistic energy correction of the H atom from different basis sets (10™¢ a.u.).

primitive/contracted deviation of calc. energy fram exact value relativistic correction AE = E rel ~ Erel
Gaussians of s,p-type

[hD] [hD]mod [hSchrijdinger ] with [hD] with [hD]mod
2,2 -43 980.037 +14 932.508 +14 931.038 58 917.732 5.187
3,3 . -11 362.633 3 285.848 3 285.219 14 654.509 6.028
4,4 - 2 319.510 812.478 812.046 3 138.213 6.225
5,5 - 513.740 222.069 221.970 742.367 6.558
6,6 - 161.260 66.196 66.122 234.039 6.583
7,7 - 77.249 21.194 21.183 105.089 6.646
8,8 - 39.727 7.228 7.220 53.604 6.649
12,14/7,7 - 2.986 0.160 0.161 9.804 6.657
14,16/7,7 - 2.747 0.028 0.029 9.433 6.657
limit (-500 006.657) (=500 000.000) 6.657

TABLE II. Ground-state energy and relativistic energy correction of Hy* (R =2a() calculated with different basis
sets (107% a.u.).

primitive/contracted deviation of calc. energy fram exact value relativistic correction AE = E ., = E
Gaussians
of s,p,d,f-type [hy] My ea [hSchrédinger] with [hy] with [hyl 4
s,p-basis
2,2/2,2 -60 698.7 27 433.7 +27 433.4 88 139.5 7.02
3,3/3,3 + 5 853.5 5 846.4 5 845.2 - 0.9 6.17
4,4/3,3 -57 773.2 1 863.8 1 863.4 59 644.0 6.97
5,5/4,4 -16 945.1 657.7 657.2 17 609.7 6.97
7,7/5,5 +26 686.0 336.8 >336.5 -26 342.1 7.06
12,14/7,7 -16 428.4 223.4 223.3 16 659.1 7.27
s,p,d-basis
4,4,1/4,4,1 - 4 3%.3 1506.7 1 506.6 5 904.3 7.23
5,5,1/4,4,1 -1 447.3 495.4 495.3 1 950.0 7.32
12,14,1/7,7,1 - 485.9 13.1 13.1 506.4 7.41
12,14,2/7,7,2 + 1 054.5 5.1 5.1 -1 042.1 7.39
12,14,3/7,7,3 - 170.3 4.2 4.2 181.9 7.36
s,p,d,f-basis
12,14,3,1/7,7,3,1 - 1105.3 1.7 1.7 1 114.4 7.36
Limit? (-1 102 641.6) (-1 102 634.2) 7.38
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ble:

H[o+p]17*([TP ) mea =L 7P I~ minimum.

(5)
Conditions (4b) and (5) result in
[E'E] mod
=[g-p)([d-p]-[p?][d-p V2. (8)

For complete basis sets [ 0+p ] mod reduces to the
exact matrix representation [3- 5 ] as required.
Zero eigenvalues of [5-5] can be avoided for
bound states by appropriate choice of the basis
so that [0-p | 7! exists.

In order to demonstrate the efficiency of the
proposed modification we performed calculations
on two one-electron systems, Hand H,*. So-
called scalar basis sets* of Gaussian lobe type
have been used. The exponents of the s and p
Gaussians were determined by a least-squares
fit to the exact hydrogen 1S/, solution, and of the
d and f Gaussians by approximate minimization
of the nonrelativistic energy. We have taken ¢
=137.036 02 a.u.

The ground-state energy E and the relativistic
energy correction AE =FE . -E . of the hydro-
gen atom are given in Table I for various basis
sets. The convergence behaviors of the rela-
tivistic £ values from the improved representa-
tion [Ap Jmoq and of the nonrelativistic E values
show a parallel trend. When the basis size is
increased, the energies derived from [%p),.q
converge from above as in the nonrelativistic
case, whereas the energies from the convention-
al [#p] converge from below in this representa-
tive example. Furthermore, the convergence is
much slower for [%p]. This holds in particular
for the AFE values. For the largest basis the
error of the nonrelativistic energy is smaller by
orders of magnitude than the relativistic energy
correction. Nevertheless AE from the conven-
tional [%p] is still in error by about 429%.

Similar results are obtained for the H,” mol-

676

ecule (Table II). Although the relativistic ener-
gy correction is quite small,® even with very
limited basis sets, reasonable values are ob-
tained from [%p]p.. In contrast, the energies
from [k ] oscillate so erratically that no limit-
ing value can be deduced. Such a behavior of
[#p] is typical for the multicenter case.

Since the difficulties in finite-basis-set ap-
proximations of the Dirac equation arise from
the one-electron & 5 operator, similar improved
results may be anticipated if the two-electron
interaction is taken into account. This is indeed
confirmed by actual calculations. Corresponding
results for many-electron systems and details
of the method will be published soon.
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