
VOLUME 48s NUMBER 9 PHYSICAL REVIEW LETTERS 1 MARcH 1982

Institute on Phase Transitions, edited by M. Levy et a/.
(Plenum, New York, 1981), and to be published.

D. S. Gaunt and M. F. Sykes, J. Phys. A 12, L25
(1979).

7Uncertainties are in units of the last decimal place.
See, e.g. , W. J. Camp et a/. , Phys. Rev. B 14, 3990

(1976).
~J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B

21, 3976 (1980).
' G. A. Baker, Jr. , et a/. , Phys. Rev. Lett. 36, 1351

(1976).

~'B. G. Nickel, Physica (Utrecht} 106A, 48 (1981).
"See J. J. Rehr et at. , J. Phys. A 13, 1687 (1980).
'3R. Z. Roskies, Phys. Rev. B 24, 5305 (1981).
'4Also J. J. Rehr and B. G. Nickel, to be published.
~5J. Zinn-Justin, J. Phys. (Paris) 42, 783 (1981).
'~J. R. Klauder, Ann. Phys. (N. Y.) 117, 19 (1979).
~J.-H. Chen and M. E. Fisher, to be published.

'BM. E. Fisher and D. F. Styer, to be published. The
main requirements are met here by ~, L, M, and N

arrays flush to the right and bottom with j~~~ =/ ~»
= n max

= mmax —2 while K is flush to left and top.

Dynamic Form Factor, Polarizability, and Intrinsic Conductivity of a Two-
Dimensional Dense Electron Gas at Zero Temperature

M. Howard Lee and J. Hong
DePartment of Physics, University of Georgia, Athens, Georgia 30602

(Received 9 September 1981)

The relaxation function for a two-dimensional dense electron gas is obtained by
solving the generalized L~~gevin equation due to Mori. The dynamic form factor, dy-
namic polarizability, and conductivity are calculated with use of linear response theory.
The conductivity arises from density fluctuations existing at finite wave vectors. The
possibility of observing such an effect is considered, especially in the recent work of
Allen, Tsui, and DeRossa.
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Recent experimental studies of inversion and
accumulation layers of the metal-oxide-semicon-
ductor system have stimulated considerable in-
terest in two-dimensional dense-electron-gas
models. ' We report here our solution for the
zero-temperature relaxation function for a two-
dimensional dense electron gas obtained exactly
from the generalized Langevin equation (GLE)
due to Mori. Our solution is valid if wave vec-
tors k for density fluctuations p~ are small corn-
pared with the Fermi wave vector kF. From this
knowledge of the relaxation function, we use lin-
ear response theory' to obtain the dynamic form
factor, dynamic polarizability, and conductivity.

Our system is represented by the two-dimen-
sional Sawada Hamiltonian H„~ imposed under an
external perturbing potential II,~ defined by

H, =g„p,(t)o~e' ',
where v~ is the Fourier component of the exter-
nal electric field such as to permit the use of lin-
ear response theory, p, (t) = exp(iH, t)p„exp(- iH, t),
p~=P~c~+~ cs, with c~ and c~the fermion crea-
tion and annihilation operators, respectively.
Mori' has given a formal solution for the relaxa-
tion function -,(t) = (p„(t),p„)/(p„, p„) in a con-

tinued-f raction representation, viz. ,

z+
Z + ~ ~ ~

where "„(z)is the Laplace transform of .~(t), cp

is the memory function or the kernel of the Lan-
gevin equation, L„~„.. . are static correlation
functions' related to moments, not depending on
H,~, and finally (A, B) denotes the Kubo scalar
product of operators A and B." For small k we
find that b, , = (&u~")'+2k'&z', A, =k'&F'+0(k ),

where k is expressed in units of k F, 8 = 1, e F is
the 2d Fermi energy, and for the classical plas-
ma frequency' we use m~" = (2npe'k/rn)"', with

p and the electron number density and mass,
respectively. We immediately note that to low-
est order in k, b,„=6 for n = 2, 3, . . . , where we
define 6 =k'~~'. Recently Lee and Dekeyser'
have shown that solutions for the relaxation func-
tion can be given for certain forms of Q, „), one
of which is being realized here in this two-di-
mensional dense-electron-gas model. Following
this work, we obtain the desired solution for the
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relaxation function,

=-, (t) =A, P (- n)" (8/apt)'"Z, (pt)/pt+A, cos(u, t,
n=0

where ij.=26."', A, = 1 —(1 —n)"', A~=[(l —a)"' —(1-a)]/(2n), o. =46 (1—b/b, ,)//6» a~ =a "'p, and
J, is the Bessel function of order 1.' The parameter o. turns out to be a natural quantity having the fol-
lowing limits: a -0 for k -0 and e = 1 if the electrons are noninteracting. ' Thus for the ideal degen-
erate electron gas at zero temperature the relaxation function reduces to

Id' $1 (f ) —g (~f )

where Jo is the Bessel function of order zero. For an interacting electron gas, one may do perturba-
tion calculations with a as a small number. However, the Fourier transform of (3) gives a closed-
form solution so that we are able to apply linear response theory exactly. Our solution (3) satisfies
the moment sum rules to all orders. '

The density-density response function or the frequency-dependent polarizability y, (ar) may be ob-
tained from (3) via a linear response relation y„(t) = —(&/Bt)" „(t) for t & 0, where j„(t)= y~(t)/y» and )(,
= (p„p„) the static response function. We find that

I
1+A,(o'(1- n)'"/(p, ' —ct(u '), 0&(u & p,

Rey, ((o) = '

1+AJd'[(l-o. )'"+(1-p'/(u')"']/(p'-a&a'), p &(u &~,

A,(u(p' —(u')"'/(p, ' —o.(u'), 0&(g & p,
—Imj, (ru) =

p1TA&(d[6(Q) —Ql&) + 5((d +(d &)], P &(d & ~.

(5a)

(5b)

c~(~) =e'f, "d« * '(ia(f),ig) (6)

where j„is the random current. The total cur-
rent is connected to the density fluctuations by
the continuity equation. The random current is
the part of the total current which remains or-
thogonal to the density fluctuations (p„,j,(t)) = 0;
that is, j~ is proportional to the random force de-

We note that Rey is symmetric in ~ whereas Imp
is antisymmetric. Also, for w -0, Rey = 1
+O(~'), ' and for cu-~, Re)(=O(co ')." En the
high-frequency regime, (5a) agrees with the big&-
frequency result obtained by Rajagopal. " For
e = 1, the above polarizability agrees exactly with
the celebrated result of Stern. ' The dynamic
form factor S„(~), which may be obtained from
Imp by the fluctuation-dissipation theorem, is
illustrated in Fig. 1. We use 4 =0.2 in units of
kp and x, =0.5 for which +~=0.64 in units of EF.'
As n - 1, the peak due to the collective mode
moves rapidly towards the broad spectrum of sin-
gle-particle scattering. At a = 1, they combine to
produce the dynamic form factor for the ideal de-
generate electron gas shown in the backdrop. To
our knowledge there are no measurements made
for the dynamic form factors, with which our re-
sult may be compared. "

To calculate the frequency-dependent conduc-
tivity o, (u) we use the Kubo formula'~

fined by the Langevin equation. "4 From our
knowledge of the relaxation function (3), it is
possible to obtain an exact expression for the
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FIG. 1. Dynamic form factor vs frequency obtained
from Eq. (Gb) with ~, = 0.5, k= 0.2, and u& = 0.64. The
dynamic form factors for interacting and noninteracting
electron gases are shown by solid and dashed lines,
repsectively. To show both in one figure, the vertical
scale used for the noninteracting electron gas is re-
duced by a factor of 4. Observe that for the ideal gas
S(cu)-~ as ~-p = 0.4.
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(tt'- ~')"'/tt,
Reo, (to) =

0,

0&& p, ,
(sa)

time-dependent random current. In addition we
note that because of the above-mentioned relation-
ship between the random current and the random
force, the current correlation function in (6) and
the memory function y are the same up to a mul-
tiplicative constant. The memory function also
has the same continued-fraction expression [see
Eq. (2)] but with b,„b,„.. . . Thus, we obtain

(j,(t),g, )/(j „,j,) =2S,(ttt)/pt. (7)

The conductivity now follows from (6) and (t):
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(d/p, ~
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—Imo, ((o) = (ab)
tt[~+ (~'-)t')"'] ',

where o~ (e ) = o, ( to) /o„an d o, = 2e'p/m tt
The real part of the conductivity satisfies the

conductivity sum rule" '~

f dw Reer„(to) = ze p/2m. (9)

The above results (8a) and (8b) are illustrated in
Fig. 2. We observe that Reo, (v) vanishes for

This is the high-frequency regime where,
ordinarily, impurities (absent in our system) are
primarily responsible for the observed conduc-
tivity. Reo„(to) is finite for 0&to & p, , arising
purely from density fluctuations at small but non-
zero wave vectors k. Following Kubo'~ we shall
refer to it as the intrinsic conductivity. In the
long-wavelength limit (k- 0), p, -0 so that there
is no conductivity just as there is no current.

Whether the intrinsic conductivity is measur-
able raises an interesting possibility. Allen,
Tsui, and DeRossa" measured the frequency-de-
pendent conductivity in the silicon inversion lay-
er at metallic densities (r, =2-4). Their meas-
ured conductivities, especially at frequencies
10-40 cm ', follow Drude behavior, which Tzoar,
Platzman„and Simon" have attributed to impur-
ity scattering. In the neighborhood of frequencies
5-10 cm ' the measured conductivities seem to
show a small downward deviation from the Drude
form. This particular behavior may represent
no more than a systematic scatter in the meas-
urements, but it is nonetheless suggestive of a
change in the conduction mechanism from low-
frequency density fluctuations to high-frequency
impurity scattering. More striking is the com-
parison between our Imo [see Fig. 2(b)] and the
"measured" Imp obtained from the measured

0.2 0.4 0.6 0,8 1.0 1.2

Reo by an application of the Kramers-Kronig re-
lation. " The position of max Imcr, which occurs
at w = p. in our result, appears to be consistent
with the location of changeover in the scattering
mechanism indicated by Rea. '

Ron and Tzoar" have deduced a perturbative
formula for calculating the conductivity due to
impurity scattering. Their formula depends on
the knowledge of the dielectric function e, (~o)
of a homogeneous system, '4

c& (m) = I —)(&(to),

With our result for the polarizability [(5a) and
(5b)], the conductivity for a slightly impure elec-
tron gas can be calculated.

We wish to thank Dr. D. C. Tsui, Professor N.
Tzoar, and Professor J. E. Rives for very help-
ful discussions on conductivity. We are grateful
to Professor A. K. Rajagopal and Professor K. S.
Singwi for explaining their work to us. Our work
was supported in part by the U. S. Department of
Energy under Contract No. DE-AS09-77ER01023.
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