
VOLUME 48, +UMBER 9 PHYSICAL REVIEW LETTERS 1 MARcH 1982

haviors found here have also their analogs when
one studies the effect of a magnetic field. '

We would like to thank E. Brezin, B.Duplantier,
C. Kipnis, J. L. Lebowitz, and I. Webman for
stimulating discussions.

Note added. —After this work was submitted,
Professor J. L. Lebowitz and Professor H. Spohn
informed us that the same problem has been
studied in a different way by mathematicians and
similar results can be found in Ref s. 8 and 9.
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High-temperature series for two bcc lattice models which interpolate between the
Gaussian (or free-field) model and the S = 2 Ising model are analyzed by partial differ-
ential approximants. Series to order 21 in both x~ 1/T and the interpolation parame-
ter, y, yield unbiased estimates for the correction-to-scaling exponent, 0 = 0.54+ 5,
and the susceptibility exponent, y = 1.2385+ 15. The results are universal and agree
tolerably with field-theoretic estimates and well with biased, one-variable analyses of
general spin Ising models.
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An important qualitative prediction of the re-
normalization-group theory of critical phenomena
is that the corrections to leading power-law be-
havior are determined in a universal way through
a nontrivial correction-to-scaling exponent (9.'
Thus a property f(T, y), such as the susceptibil-
ity of a ferromagnetic system specified by an
"irrelevant" parameter y, e.g. , the ambient pres-
sure, should vary as

f(T, y) =&(y)aft (&s+O(y) tc't~+~ ], (l)

when t ~ T —T, (y) -0+: The leading exponent g
and the coefficients a& and c& depend on the prop-
erty studied, but should otherwise be universal,
i.e., independent of y; however, 0&0 ought to be
independent of both y and f; only A(y) and C(y)

should be nonuniversal. ' Analyses by ratio and
Pade-approximant techniques of high-tempera-
ture series expansions for lattice spin models
have been strikingly successful in estimating
leading exponents, such as y for the susceptibil-
ity. ' However, convincing, unbiased estimation,
or even detection, of the confluent correction
exponents and amplitudes has proved an elusive
goal in single-variable series expansion studies.
In this note we report an attack on the problem
for two distinct d =3 (d =dimensionality) models
which, as y varies from 0 to 1, interpolate
smoothly between the exactly solvable Gaussian
or free-field model and the standard, discrete
spin--,' Ising model: See Fig. 1 where x = J/k s T
with exchange parameter 4. By applying tseo-
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FIG. 1. The {x=8/kBT, y) plane for the double-Gaus-
sian model showing the critical locus, x,(y). An analyt-
ic continuation of the model exists wherever I8x(l-y)

I

& 1 so that only the small shaded region for x& xG is
unphysical (Ref. 14). The broken curves depict some
partial differential Qow trajectories (Befs. 3 and 4}.

~amiable series expansion techniques, specifical-
ly partial differential approximants" (whose
power has not previously been demonstrated in
this context), to series of order x" recently ob-
tained for the bcc lattice, ' we derive unbiased
estimates of t) and y, and verify universality.

To set the scene, recall first that a recent
ratio analysis of the S= —,

' Ising-model suscep-
tibility for the fcc, bcc, sc, and diamond lattices
(to orders 15, 15, 19, and 22, respectively) re-
affirmed the fifteen-year-old estimate' y = 1.250
+3 and gave no evidence of significant confluent
corrections. Nevertheless, previously observed
discrepancies of 0.02 or so in the y estimates
from shorter series for various models expected
to be in the same universality class (such as
Ising S= ~) have usually been attributed to con-
fluent corrections. '

However, a detailed analysis' of the d = 3 field-
theoretic perturbation expansions" leads to y
=1.241+ 2 and 8=0.498+ 20. This significant dis-
agreement might be attributed merely to the un-
bounded, continuous spin variables and lack of
an explicit momentum cutoff in the underlying
field theory; but this intrinsically unpalatable
option is effectively foreclosed by the derivation
of Ising-model series to order x" for arbitrary
spin, S, on the bcc lattice. ' Analysis of the
series'" by standard Dlog Pads methods' clear-
ly indicates (a) a value ) & 1.243 for all S, and

(b) the presence of significant corrections to
scaling for both S=-,' and S= ~.

f(x, s) I «I 'z(&s/I &x I') +&.(», x), (2)

where, up to normalization of amplitude and

argument, Z(z) is a universal scaling function
while B,(x, y) is a smooth background. If y is
a relevant variable one has g & 0 and (2) describes
crossover behavio&, e.g. , from Heisenberg (for
y =y, ) to Ising or XI' behavior. "Here, however,

y is irrelevant and -g = 0 is positive.
Now the crux of our approach is that the scaling

form (2) which implies universality over y is
explicitly realizable and all the information in
the double power series for f(x, y) may be used
M)it&out bias in constructing inhomogeneous par-

Now special methods of analysis have been
proposed to study expansions when confluent
singularities are anticipated. " However, the
task of finding both g and t) in (1) involves intrin-
sically unstable fitting procedures. " To circum-
vent this difficulty biased techniques have been
invoked. Thus in order to reconcile theS=2 Ising
and field-theoretic results Roskies" assumed 8
= —,

' and a critical-point value x„even then, fair-
ly arbitrary "optimal fit" criteria were needed
to obtain a preferred y estimate. To treat the
general spin-S model and models with a continu-
ous parameter, y, by second-order differential
approximants, "Nickel and Rehr"' varied an
assigned 8 value and defined the "best" value as
that which gave the most nearly universal y when

comparing a finite number of models with S or y
fixed. Consistency could be attained" with y
=1.239+2 and 8=0.53+15 but these values are
implicitly biased by the subjective choice of
models compared. Similarly, a refined ratio
analysis of the series by Zinn-Justin" convincing-
ly revealed the presence of confluent singularities
but his estimates y=1.2385+ 25 and 8=0.52~7
also depend on the assumption that y is universal,
and on which S values are considered most signifi-
cant.

Furthermore, (1) represents only the leading
effects of the irrelevant variable; higher powers
of t must appear and may be important. More
explicitly, renormalization-group analysis indi-
cates' that on the critical locus, T,(y), there
should be a special point [y„x, -=&/k s T, (X,) J

(see Fig. 1), and associated nonlinear scaling
fields, "'&y(x, y) and bx(x, y) -t~T —T, (X),
varying as (bx —by je,) and (&y -e,bx) when
M=-x -x, 4y=y -y, -0, where e, and e, specify
the scaling axes. Then as M -0 for 4y not too
large, a better description than (1) should be
provided by the multicritical scaling form'4
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tial differential approximants, F(x, y) —= [J/L; M,
N! g]f, defined by solving the equation'

U) +PL F= QMBF/sx+RN &F/&y . (3)

Here the polynomials U& (x, y) =+&, ,'& u, ,'x'y',
etc. are chosen so that the power series solution
of (3) agrees with the known expansion coeffi-
cients of f(x, y) for orders x "y with (k, k') in

WoG(s; y) ~ b/exp[-b'(s —vy)']+ exp[-b'(s + Ey)']],

WK~(s;y) ~b! s!' ' ' exp[-b'(s' —1)],

the label set K. The common zeros of Q~ and

RN yield estimates of x, and y, (see Fig. 1) and

thence follow unbiased estimates of g, p, e„and
e,." Integration of (3) along trajectories, "as
illustrated in Fig. 1, to regions where f(x, y) is
reliably known yields F for general x and y.

We have studied the bcc scalar double-Gaussian
(DG) and Klauder" (Kl) models specified by the
single-spin weighting factors

(4)

(s)

with b'(y) = —,'(1-y) so that (s')~-, =1. Aty =1
both models become the S= —,

' Ising model; for y
=0 both reduce to the Gaussian or free-field
model with yo = [1—(x/xo) ] ' and x o 8.

It proves convenient to analyze the series for f
=xy&G(x, y) and f=y &K( xy) -1, respectively,
both being upper triangular, i.e., with expansion
coefficients f„'=0 for i'&i. The exact Gaussian
limit form, crossover exponent QG =-,', scaling
axes (see Fig. 1), etc. , are enforced via suitable
constraints on U~, I'q, etc.'" Since the arrays
[f, ,'] are upper triangular it is appropriate to
use upper triangular label sets J, L, M, N, and

K; but there remains a vast choice of possible
shapes and sizes for the coefficient arrays, many
of which, however, yield defective approximants
not properly describing the critical locus T,(y).'
Now, for ordinary Padd' approximants invariance
under the Euler transformation x~x/(1+Ax),
yields optimal approximants': invariant and near-
invariant approximants prove more reliable,
stable, and rapidly convergent. For inhomoge-
neous partial differential approximants the cri-
teria for Euler invariance in x and, separately,
in y have recently been elucidated"; using these
we have computed over 300 unbiased Eulerian or
near-Eulerian approximants for the DG model,
and over 180 for the Klauder model using coeffi-
cients of orders g" to x". Similar features of
reliability, stability, and apparent convergence
are observed All bu.t a small minority of the
approximants specify one and only one Ising-like
multicritical point in the range 0&y &1.8. This
lies on the critical locus emanating from the
Gaussian point, x G (Fig. 1), and thus the univer-
sality of the exponents over the physical range
0&y -1 is confirmed, separately, in both models.

Comparison of the corresponding y and 0 histo-
grams in Fig. 2 provides no reason to doubt that
both models have the same Ising-like critical
exponents even though the dispersion for the

! Klauder model is appreciably smaller. These
graphs, however, conceal the characteristically
strong correlations among the critical param-
eters evident in Fig. 3, which presents, for the
Klauder model, exponent means and standard
deviations, 0, grouped by ranges of associated
y, estimates. The outer, dashed deviation lines
for 8 include the typically erratic" extreme
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I'IG. 2. Histograms of y and 0 estimates for the
double-Gaussian and Klauder remodels (see text).
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estimates. (The corresponding double-Gaussian
model figure is similar. ") The vertical solid
and dashed lines on the y, histogram locate the
quartiles and octiles, respectively. Forming
the mean, y, [=0.857 (DG), 0.845 (Kl)], of the
three central quartiles (shaded in Fig. 3) ameli-
orates the effects of the sporadic outlying esti-
mates. We will focus attention, for each model,
on the quartile centered on y, since we believe
the corresponding approximant estimates encom-
pass the true multicritical parameter values. In

Fig. 3 the dotted vertical line marks y, and the
mean-centered quartile is crosshatched. In Fig.
2 the corresponding estimates are indicated by
the heavy shading; they yield y=1.2377+ 16 and

1.2384+15, and 0=0.544+58 and 0.546+39, for
DG and Kl, respectively, the uncertainties being
+0.675'. These estimates are indicated by shad-
ing on the y and 0 plots in Fig. 3. The lighter
shading in Fig. 2 extends the histograms to two

FIG. 3. Histogram of y~ estimates and corresponding
exponent means (solid dots) and standard deviation
limits for the Klsuder model (see text). The open chain
curve (circles snd dashes) represents single-variable
estimates.

mean-centered quartiles with insignificant change
in mean values. "

The open chain curve for y in Fig. 3 represents
single -variable estimates from inhomogeneous
differential approximants, [i /l; M]» ' for )( at
fixed y. This technique does not allow for strong
confluent singularities and, hence, should be
most accurate when y =y, . It is thus striking
(see Fig. 3) that for both models the single-vari-
able locus intersects the y(y, ) plot of two-vari-
able estimates well within the range of the mean-
centered quartile.

In conclusion, the unbiased two-variable partial
differential approximant technique applied to sus-
ceptibility series to order 21 for two distinct
models, the double-Gaussian and Klauder models,
confirms universality over the parameter y, and

between the models with Ising exponents' y
= 1.2385 + 15 and & = 0.54+ 5 (and multicritical
values y, =0.87+4, y, '=0.81+6). The uncer-
tainties quoted are, inevitably, somewhat sub-
jective but the reader may form his own judge-
ment on the evidence presented. " The exponent
estimates, though more precise, agree very well
with biased, single-variable estimates for the
Ising model of general spin S (= —,

' to ~)."'4'" In
addition, they overlap the field-theoretic esti-
mates'" although indicating a distinctly higher
value of 9 and a slightly lower value of y.
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The relaxation function for a two-dimensional dense electron gas is obtained by
solving the generalized L~~gevin equation due to Mori. The dynamic form factor, dy-
namic polarizability, and conductivity are calculated with use of linear response theory.
The conductivity arises from density fluctuations existing at finite wave vectors. The
possibility of observing such an effect is considered, especially in the recent work of
Allen, Tsui, and DeRossa.
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Recent experimental studies of inversion and
accumulation layers of the metal-oxide-semicon-
ductor system have stimulated considerable in-
terest in two-dimensional dense-electron-gas
models. ' We report here our solution for the
zero-temperature relaxation function for a two-
dimensional dense electron gas obtained exactly
from the generalized Langevin equation (GLE)
due to Mori. Our solution is valid if wave vec-
tors k for density fluctuations p~ are small corn-
pared with the Fermi wave vector kF. From this
knowledge of the relaxation function, we use lin-
ear response theory' to obtain the dynamic form
factor, dynamic polarizability, and conductivity.

Our system is represented by the two-dimen-
sional Sawada Hamiltonian H„~ imposed under an
external perturbing potential II,~ defined by

H, =g„p,(t)o~e' ',
where v~ is the Fourier component of the exter-
nal electric field such as to permit the use of lin-
ear response theory, p, (t) = exp(iH, t)p„exp(- iH, t),
p~=P~c~+~ cs, with c~ and c~the fermion crea-
tion and annihilation operators, respectively.
Mori' has given a formal solution for the relaxa-
tion function -,(t) = (p„(t),p„)/(p„, p„) in a con-

tinued-f raction representation, viz. ,

z+
Z + ~ ~ ~

where "„(z)is the Laplace transform of .~(t), cp

is the memory function or the kernel of the Lan-
gevin equation, L„~„.. . are static correlation
functions' related to moments, not depending on
H,~, and finally (A, B) denotes the Kubo scalar
product of operators A and B." For small k we
find that b, , = (&u~")'+2k'&z', A, =k'&F'+0(k ),

where k is expressed in units of k F, 8 = 1, e F is
the 2d Fermi energy, and for the classical plas-
ma frequency' we use m~" = (2npe'k/rn)"', with

p and the electron number density and mass,
respectively. We immediately note that to low-
est order in k, b,„=6 for n = 2, 3, . . . , where we
define 6 =k'~~'. Recently Lee and Dekeyser'
have shown that solutions for the relaxation func-
tion can be given for certain forms of Q, „), one
of which is being realized here in this two-di-
mensional dense-electron-gas model. Following
this work, we obtain the desired solution for the
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