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Classical Diffusion on a Random Chain
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A simple model of classical diffusion on a random chain is studied. The velocities to
the right and to the left are calculated. When one changes continuously the probability
distribution p of the hopping rates, a whole region is found where these two velocities
vanish. In this region, the distance R covered by a particle during the time t behaves
like R -t", where x depends continuously on p. The exponent x is calculated for a simple
example.

PACS numbers: 66.80.Dn, 05.40.+j, 05.60.+w, 72.80.Ng

Recently, the problem of classical diffusion in
a random medium has attracted a lot of interest. ' 4

In these works, the problem was studied on a lat-
tice with random nearest-neighbor transfer rates
which are symmetric: The probability of hopping
from site i to site j was equal to the probability
of hopping from site p to site i. Several interest-
ing results were derived depending on the distri-
bution of these random transfer rates. ' A list of
physical situations (the hopping conduction, mag-
netic models, etc.) leading to this problem can be
found in Ref. 2.

Even more interesting seems to be the nonsym-
metric case. In a discrete-time version, one can
formulate the problem as follows. One considers
a particle on a one-dimensional lattice. If the
particle is on site i at time t, it will be at time
t +1 either on site i +1 with probability p& or on
site i —1 with probability q; =1-p;. The problem
is obvious if all the p, are equal. However, if the

p; are randomly chosen with some probability dis-
tribution p(p;), one can observe very unexpected
behaviors. One of the most striking results was
obtained by Sinai' who has studied a case where
the distribution p(p, ) satisfies

(ln[p;/(1-p;)]) = fp(p;)dp; ln[p;/(1- p;)] =0.

He finds that if a particle is on site 0 at time 0,
then with probability 1 it will be at 3. distance R

- ln't at time t. This behavior differs completely
from the usual diffusion (all the p; = T) where R

t1/2

The purpose of this Letter is to show that other
unexpected behaviors occur even when the con-
straint (1) is not present. We first show that
there exists a finite velocity to the right (to the
left) only if ((1-P;)/P;) 1 [(P,/(1-P;)) 1]. If
these two inequalities are both unsatisfied, the dis-
tance ~ covered by the particle during the time t
behaves like R —t", where x is an exponent depend-
ing continuously on the distribution p. For a sim-
ple distribution p, we give the expression of x as
a function of the parameters which define p.

For this problem of diffusion, the first equation
that one can write is an equation for P„(t) which
is the probability for the particle to be on site n

at time t. It is clear that P„(t) verifies

P„(t +1) =q„P„(t)+p„P„,(t).

To calculate the velocity V, it is easier to con-
sider a lattice of N sites with periodic boundary

conditions (site N+n is identified with site n)
After a very long time, the probability distribu-
tion P„(t) converges to an equilibrium probability
distribution Q„which satisfies

@n qn+1@n+1+pn-|@n -1'
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Then the velocity V is given by

n= 1 n=1
(4)

It turns out that the Q„can be determined ex-
plicitly as a function of all the p, by using the re
currence (3), and by writing the periodic boundary
condition Q„„=Q,. The result can be written as

where s„ is defined by

x [N(1 —ps, )]

Now let us try to average V ' over the possible
choices of the P;. Consider first the case where
(1ns) & 0 [i.e., (lnP) & (ln(1 —P))]. Then the product
in the denominator of (7) can be neglected with
probability 1 in the limit N - ~ and it becomes
easy to average both sides of Eq. (7):

and C is just a normalization constant. Obviously,
the boundary condition chosen here implies that
s~,„=s„. From expressions (4) and (5) we can
now calculate the velocity V for any choice of the
P;. In order to have a quantity which will be sim-
pler to average and to study, we give the expres-
sion of the inverse velocity:

N-1 t

trary to average the inverse velocity V '. How-
ever, if (s) & 1 or (s ') & 1, one can show that the
fluctuations of V ' are small in the large-N limit
[the simplest thing to show is that the fluctuations
of V ' are of order N "' if (s') & 1 or (s ')&1].
This indicates that the velocity has small

fluctuat-

ionss, and therefore (V ') =(V) '.
At this stage, the main question is what happens

if (s) & 1 and (s ') & 1. In order to simplify the cal-
culations, we shall restrict ourselves to a sim-
ple distribution p which depends on two parame-
ters n and p (for convenience we choose p & ~):

P(P;) =&~(P; —P) +(1 —&)&(P; —(1 —P)). (10)

However, all the results presented here can be
generalized to other distributions p. The main
idea consists in showing that V ' behaves like a
power law N' for almost all the samples in the
limit N- ~. The choice of distribution (10) is
motivated by the fact that the exponent y will have
a simple expression as a function of the parame-
ters n and p which define p.

For the distribution (10), a finite velocity exists
if n&p (i.e., (s)&1) or n&(1-p) (i.e., (~ ')&1)
and the region we want to study is 1 —p&n &p.
Let us come back to formula (7). If (Ins) & 0 (here
it means that ~ & ~), we can again neglect the
product in the denominator. Then by regrouping
terms in (7), one can write V ' as

V ' =1+2 Q S„+S„,

where 8„ is defined by

E n

S.= —Q g s;+,'
t=l j=l

(12)

The series is convergent in the limit N - only
if (s) & 1. We conclude that there is a finite veloc-
ity for this problem only if (s) & 1 and in this case,
the velocity is given by

If the distribution p was chosen such that (ins)
& 0 but (s) & 1, the inverse velocity would be infi-
nite. %e shall see later that in this ease, the dis-
tance R covered by the particle during the time t
is no longer proportional to t but to t" with 0(x
&f ~

The calculation of (V ') can be done in the case
(Ins) & 0 in the same way as for (ins) & 0. One
starts by neglecting 1 in the denominator of Eq.
(7) and then one finds that (V ') is finite only if
(s ')&1. The result for V ' is, in this case,
(V ') = —(1+(s '))/(1-(s ')). lt may look arbi-

In the limit N- ~, if n rema, ins finite, S„-(s)"
and so S„ increases with n. On the other hand,
S„=II, , s, vanishes with probability 1. There-
fore, there are certainly in the sum (11) terms
between n =1 and n =N which are maximum and
give the dominant contribution to V ' in the limit
N- ~. S„ is a sum of N terms and one could be
tempted to use the central-limit theorem. This
would be wrong because for most values of n, the
number of terms in the sum (12) is too small to
give the average (s)". Therefore, with probability
1, S„ is not equal to (S„).

We define &(m) as the number of terms in the
sum S„which are equal to N '[(1 —p)/p]" ' . The
average (O(m)) is
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lnN
(2n —1) ln[n/(1 —a) J

(16)

V-'-S --N'-'

with z =in[P/(1 —p)]/ln[n/(1- u)].
To obtain the most probable value of S„, we

have completely ignored the correlations between
the terms in the sums (11) and (12). A calcula-
tion taking these correlations into account would
be more complicated, but the result would be the
same apart from some factors InN in Eq. (17).
We have chosen Q(m)-1 to determine m, , and
vs „.If we had replaced 1 by any other finite
constant, the result would have been the same.

The fact that sum (11) was replaced by S„- can
be justified by looking at the behavior of S„
around n. One can estimate that there are - lnN
terms in (ll) which are comparable to S„-. There-
fore (17) is again valid apart from factors of or-
der lnÃ.

We have shown that the inverse velocity V '
-N' ' for a chain of N sites with periodic bound-
ary conditions when ~ & + &P. This means that to
cover a distance R- N the particle needs a time
t =V 'N- N'. It is equivalent to say that the dis-
tance R covered by the particle during the time t
behaves like R —t" with x =1/z. It is interesting
to notice that in (11), all the terms are positive
and therefore the sign of V ' is positive. This
means that when n & ~, there is a systematic dis-
placement to the right. If n &~, V ' becomes neg-

For large n, we see that, depending onm, (Q(m))
can be either much larger than 1 or much smaller
than 1. The critical values m;„and m „can be
estimated by requiring that (Q(m)) = l. If m
&m&m, „, then (Q(m)) is large [(Q(m))»1];
therefore with probability 1, Q(m) =(Q(m)&. This
is due to the fact that the fluctuations of Q(m) are
of order (Q (m))"' only. On the other hand, if m

&m;„or m &m,„, (Q(m)) is small [(Q(m)) «1]
and then Q(m) =0 with probability 1. For large n,
the values m;„and m, „are the two solutions of

n(l —u) ne
lnN+m ln +(n -m) ln =0. (14)m n-m

It follows that S„ is given with probability 1 by
~max 1 — "2

S = g C u'" &(1-u) p (15)
~=~min p

With this evaluation of S„, we can come back to
the calculation of V ' by looking for the value n

which is dominant in sum (ll). One finds that

Left Phase Right Phase

Finite
!= velocity

Finite
velocity

R R ~-t&

1-p 1/2

FIG. 1. Phase diagram for the distribution p(p&)
=ud(p; —p)+(1-u)5(p; —(1—p)). If u & s, there is a
systematic displacement to the right. The velocity is
finite only if e &p. For &2& o. &p, the distance 8 covered
during the time t is given by R-t" with x=in[n/(1-u)]/
In(p/(1-p)] . The situation for u & 2 is symmetric.

ative because the dominant term in the denomina-
tor of (7) is the product (Fig. 1).

In the limit of constraint (1) (here u - &), x van-
ishes and we find that R increases less rapidly
than any power law. This is in good agreement
with R -ln t found by Sinai. ' In the limit where
(s)- 1 (here u -p) x tends to 1. We recover that
in this limit, the distance starts to be proportion-
al to the time.

In addition to the calculations presented in this
Letter, we have done calculations on an infinite
chain. In these other calculations, we took the
time Fourier transform of Eq. (2) and we calcu-
lated the behavior of P„(~) for large n. We found
results identical with those presented here.

We think that the power-law behavior found here
is not of the same nature as the behavior found in
Refs. 1 and 2. The two problems are actually dif-
ferent. ' Here the distribution p is regular (i.e.,
all its moments are finite) but there is a jump at
every unit time and the probability of jumping
from site i to site j is not symmetric. On the
contrary, in the case of symmetric hopping rates
and continuous time, the average of the inverse
transfer rate needs to be infinite to have a power-
law behavior as shown in Refs. 1 and 2.

The main idea used here is that the most proba-
ble value of a quantity (here S„) can be very differ-
ent from its average. This idea was yet devel-
oped in the context of random magnets. ' All the
calculations presented here can be done in this
other context. One has only to change the names
of quantities: The inverse velocity becomes the
magnetic susceptibility and S„becomes the space-
averaged correlation function. The power-law be-
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haviors found here have also their analogs when
one studies the effect of a magnetic field. '

We would like to thank E. Brezin, B.Duplantier,
C. Kipnis, J. L. Lebowitz, and I. Webman for
stimulating discussions.

Note added. —After this work was submitted,
Professor J. L. Lebowitz and Professor H. Spohn
informed us that the same problem has been
studied in a different way by mathematicians and
similar results can be found in Ref s. 8 and 9.

J. Bernasconi, S. Alexander, and R. Orbach, Phys.

Rev. Lett. 41, 185 (1978).
S. Alexander, J. Bernasconi, W. R. Schneider, and

R. Orbach, Rev. Mod. Phys. 58, 175 (1981).
T. Odagaki and M. Lax, Phys. Rev. Lett. 45, 847

(1980).
I. Webman, Phys. Rev. Lett. 47, 1496 (1981).
Ya. G. Sinai, in Proceedings of the Sixth International

Conference on Mathematical Physics, Berlin, August
1981 (to be published), and to be published.

6B. Derrida and H. Hilhorst, J. Phys. C 14, L589
(1981).

B. Derrida and H. Hilhorst, to be published.
H. Kesten, M. V. Kozlov, and F. Spitzer, Compositio

Math. 80, 145 (1975).
~F. Solomon, Ann. Prob. 8, 1 (1975).

Unbiased Estimation of Corrections to Scaling by Partial Differential Approximants
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High-temperature series for two bcc lattice models which interpolate between the
Gaussian (or free-field) model and the S = 2 Ising model are analyzed by partial differ-
ential approximants. Series to order 21 in both x~ 1/T and the interpolation parame-
ter, y, yield unbiased estimates for the correction-to-scaling exponent, 0 = 0.54+ 5,
and the susceptibility exponent, y = 1.2385+ 15. The results are universal and agree
tolerably with field-theoretic estimates and well with biased, one-variable analyses of
general spin Ising models.

PACS numbers: 64.60.Fr, 02.60.+y, 05.70.Jk, 75.10.Hk

An important qualitative prediction of the re-
normalization-group theory of critical phenomena
is that the corrections to leading power-law be-
havior are determined in a universal way through
a nontrivial correction-to-scaling exponent (9.'
Thus a property f(T, y), such as the susceptibil-
ity of a ferromagnetic system specified by an
"irrelevant" parameter y, e.g. , the ambient pres-
sure, should vary as

f(T, y) =&(y)aft (&s+O(y) tc't~+~ ], (l)

when t ~ T —T, (y) -0+: The leading exponent g
and the coefficients a& and c& depend on the prop-
erty studied, but should otherwise be universal,
i.e., independent of y; however, 0&0 ought to be
independent of both y and f; only A(y) and C(y)

should be nonuniversal. ' Analyses by ratio and
Pade-approximant techniques of high-tempera-
ture series expansions for lattice spin models
have been strikingly successful in estimating
leading exponents, such as y for the susceptibil-
ity. ' However, convincing, unbiased estimation,
or even detection, of the confluent correction
exponents and amplitudes has proved an elusive
goal in single-variable series expansion studies.
In this note we report an attack on the problem
for two distinct d =3 (d =dimensionality) models
which, as y varies from 0 to 1, interpolate
smoothly between the exactly solvable Gaussian
or free-field model and the standard, discrete
spin--,' Ising model: See Fig. 1 where x = J/k s T
with exchange parameter 4. By applying tseo-
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