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Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Oytical Cavity
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It is shown that the transmitted light from a bistable optical cavity exhibits instability
leading to periodic and chaotic self-pulsations, when the relaxation time of the medium
is much longer than the delay time of the feedback of light. This instability, which is
different from the--delay-induced one predicted recently by the authors and observed by
Gibbs and co-workers, is interpreted as a self-induced Rabi nutation of the electric field
vector.

PACS numbers: 42.65.Bp, 05.40.+ j
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(la)

(1b)

which describe the dynamics of a ring cavity con-
taining a dispersive nonlinear medium. ' Here
E(t) is the slowly varying (complex) envelope of
the electric field scaled in a dimensionless form

It was pointed out by several authors that the
stationary response of a bistable optical system'
becomes unstable. ' 4 Recently the present auth-
ors investigated the dynamics of a ring cavity
containing a nonlinear dielectric medium and
predicted that instability in such a cavity gives
rise to a turbulent behavior in the transmitted
light, when the incident light is sufficiently in-
tense."Subsequently Gibbs and others succeed-
ed in the first experimental observation of such a
phenomenon using a hybrid optical bistable de-
vice. '

This instability has its origin in delayed feed-
back of the light transmitted from the nonlinear
medium and takes place only if the following con-
ditions are satisfied: (1) The relaxation time of
the medium y

' is shorter than the delay time of
the feedback t„, and (2) the phase shift of the
electric field across the medium y is much larg-
er than unity.

In this Letter we investigate another limiting
regime, i.e., the regime characterized by t~y
«1 and y«1, and show that a new kind of insta-
bility different from the delay-induced one occurs
in this regime, leading to periodic and chaotic
self-pulsations of the transmitted light under
suitab1e conditions.

Let us start with the differential-difference
equations

by (k In, I(1 - e ')/aj'~' (-=E,), where k is the
wave number of the incident field, n, the quadrat-
ic coefficient of the nonlinear refractive index,
o. the absorption coefficient, and I the length of
the medium. The variable y(t) is the phase
shift of the electric field across the medium, and

pp is a mistuning parameter of the cavity. The
parameter A is the measure of the incident field
E, and is defined by A=(1 —R)'I'IE~ I/E„where
8 is the ref lectivity of the mirrors. ' The param-
eter B, defined by B=Ae '-I' ((1), characterizes
the dissipation of the electric field in the cavity. '

We consider here the case where t~y«l is
satisfied and the medium is so thin that the phase
shift and the dissipation are sufficiently small.
More explicitly, we assume that p(t), p„and
1-Bare small quantities of the order of t~y
(-=7n). Under these assumptions, which may be
regarded as mean-field assumptions, ' E (t ) and A
must be of the order of v~' ' and 7~' ', respec-
tively, and Eqs. (la) and (1b) are approximated
by a set of ordinary differential equations

5( ) = —&5( )+ '
[n(&) —n. l h( ), (2a)

(2b)

Here, new variables ( and q as functions of di-
mensionless time T=—t y have been introduced by
E(t) =—7n' '$(7) and y(t) —= 7ng(~). Parameters
a, b, and gp are related to A, I3, and y„respec;
tively, through A=T„'a, 1-B=-v„b, and yp

7 z Q p Al 1 these new variables and para meters
have been chosen to be of the order of unity.

The stationary solution of Eqs. (2a) and (2b),
denoted by t, and rt„satisfies the relations

I (.I'[h'+(
I (.I' —g,)']=a' and I &.I' = n. .

mer relation shows that, if gp& 43b, there exists
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ity takes place when the relaxation time of the
medium is shorter than the lifetime of the cavity,
i.e., 1-R+o.l/2 «t„y, ' and can be interpreted
as a self-induced Rabi nutation of the electric
field vector. For a, Fabry-Perot cavity contain-
ing a Kerr medium, the incident power required
for the occurrence of this instability is given by
[4a (tzy) /(1-R)klnml X10 ' INW/cm2; its typical
value is estimated to be 10 MW/cm' by using n,
-10 "esu, ' l-1.5 cm, k-10' cm ' ]„y-0.3.

and R =0.97. Thus the instability discussed in
this Letter will be observed for a. smaller inci-
dent power as compared with the delay-induced
instability, if a medium of the same length is
used. ' The experiment will be free from trans-
verse focusing effects, because the induced phase
phase shift is sufficiently small.

Discussions with I. Tsuda are gratefully ac-
knowledged.

~@present address: The School of Allied Health Sci-
ences, Yamaguchi University, Kogushi, Ube 755,
Japan.

~H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan,
Phys. Bev. Lett. 19, 1135 (1976), and Opt. Eng. 19,
463 (1980), and references cited therein.

~S. L. McCall, Appl. Phys. Lett. 82, 284 (1978).
3K. Ikeda, Opt. Commun. 80, 257 (1979).
B. Bonifacio, M. Gronchi, and L. A. Lugiato, Opt.

Commun. 30, 129 (1979); L. A. Lugiato, Opt. Commun,
33, 108 (1980).

K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett.
45, 709 (1980}.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L.
Shoemaker, Phys. Rev. Lett. 46, 474 (1981).

YIn case a Fabry-Perot cavity is used instead of the
ring cavity, l and n2 should be replaced by 2l and Bn»
respectively. [See F. S. Felber and J. H. Marburger,
Appl. Phys. Lett. 28, 781 (1976) .J

R. Bonifacio, M. Gronchi, and L. A. Lugiato, Nuovo
Cimento 53, 811 (1979).

~This means the following: For a sufficiently large a,
say a&, Eqs. (2a) and (2b) are solved with increasing 7. ,
starting from arbitrary $(0) and g(0). At a sufficiently
large ~, say 7~, a is decreased slightly. Starting from
((Tg ag) and p(T~', a~), the equations are solved again
with in.creasing 7. The latter two steps are repeated.
As the solutions in the vicinity of the chaotic domain in
Fig. 2 depend sensitively on the initial condition, a dif-
ferent phase diagram will be obtained if the equations
are solved in a different manner.

~OR. May, Nature (London) 261, 459 (1976), and ref-
erences cited therein.

H. Haken, Phys. Lett. 58A, 77 (1975).
E. N. Lorenz, J. Atmos. Sci. 20, 180 (1968).
O. E. Bossier, in Synergetics, A workshop, edited

by H. Haken (Springer-Verlag, Berlin, 1977).
~4Felber and Marburger, Ref. 7.

Tandem Transport and Ambipolarity in the Resonant Plateau Regime

J. R. Myra and Peter J. Catto
Science Applications, Inc. , Plasma Research Institute, Boulder, Colorado 80809

(Received 11 August 1981)

A simple model for ion radial transport in the resonant plateau regime is derived.
It is shown that the ion diffusion coefficient is insensitive to the radial electric field
over a wide rarge of parameters. With use of this result, and the expression for the
electron Qux, a self-consistent picture of ambipolar tandem operation for quadrupole
symmetric systems is obtained and compared with experiment.

PACS numbers: 52.55.Ke, 52.25.Fi

The success of the tandem mirror' as a viable
fusion reactor depends in part on keeping the ra-
dial particle loss rate small compared to end
losses, in order that the gain of electrostatic end
plugging not be outweighed by radial transport.
Additionally, the radial variation of the electro-
static potential, which, as will be seen, is coup-
led to the radial transport problem, is itself of

central concern since the tandem concept requires
a confining potential for solenoid ions on field
lines away from, as well as along, the machine
axis. In this Letter, a simple model for the ra-
dial ion flux in the resonant plateau (HP) regime
is derived. With use of a previously obtained re-
sult for the electron flux, ' a self-consistent pic-
ture of ambipolar tandem operation is obtained.

620 1982 The American Physical Society


