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Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Optical Cavity
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It is shown that the transmitted light from a bistable optical cavity exhibits instability
leading to periodic and chaotic self-pulsations, when the relaxation time of the medium
is much longer than the delay time of the feedback of light. This instability, which is
different from the delay-induced one predicted recently by the authors and observed by
Gibbs and co-workers, is interpreted as a self-induced Rabi nutation of the electric field

vector,

PACS numbers: 42.65.Bp, 05.40.+j

It was pointed out by several authors that the
stationary response of a bistable optical system*
becomes unstable.?™ Recently the present auth-
ors investigated the dynamics of a ring cavity
containing a nonlinear dielectric medium and
predicted that instability in such a cavity gives
rise to a turbulent behavior in the transmitted
light, when the incident light is sufficiently in-
tense.?'® Subsequently Gibbs and others succeed-
ed in the first experimental observation of such a
phenomenon using a hybrid optical bistable de-
vice.®

This instability has its origin in delayed feed-
back of the light transmitted from the nonlinear
medium and takes place only if the following con-
ditions are satisfied: (1) The relaxation time of
the medium y ™! is shorter than the delay time of
the feedback £, and (2) the phase shift of the
electric field across the medium ¢ is much larg-
er than unity.

In this Letter we investigate another limiting
regime, i.e., the regime characterized by f,y
<1and ¢ <1, and show that a new kind of insta-
bility different from the delay-induced one occurs
in this regime, leading to periodic and chaotic
self-pulsations of the transmitted light under
suitable conditions.

Let us start with the differential-difference
equations

E(t)=A+BE(t - tp)exp{i[¢(t) - @]}, (1a)
ylo(t)==@(t)+sgn(n,) |E(t-tg)|?, (1b)

which describe the dynamics of a ring cavity con-
taining a dispersive nonlinear medium.®> Here
E(t) is the slowly varying (complex) envelope of
the electric field scaled in a dimensionless form

by {&|n,|(1-e"**)/a}'/? (=E,), where k is the
wave number of the incident field, #, the quadrat-
ic coefficient of the nonlinear refractive index,
a the absorption coefficient, and ! the length of
the medium. The variable ¢(¢) is the phase
shift of the electric field across the medium, and
¢, is a mistuning parameter of the cavity. The
parameter A is the measure of the incident field
E, and is defined by A=(1 - R)*/?|E, |/E,, where
R is the reflectivity of the mirrors.® The param-
eter B, defined by B=Re /2 (<1), characterizes
the dissipation of the electric field in the cavity.”
We consider here the case where {,y<1 is
satisfied and the medium is so thin that the phase
shift and the dissipation are sufficiently small.
More explicitly, we assume that ¢(¢), ¢,, and
1 - B are small quantities of the order of 5y
(=Tg). Under these assumptions, which may be
regarded as mean-field assumptions,® E(¢) and A
must be of the order of 7.'/% and 7,.%/2, respec-
tively, and Eqgs. (1a) and (1b) are approximated
by a set of ordinary differential equations

1) =a-b&1)+i[n(1) = n,) £(7), (22)
7)== n(1)+ [E(7) ]2, (2b)

Here, new variables £ and 7 as functions of di-
mensionless time 7={y have been introduced by
E(t)=7g/2£(7) and ¢(¢)=T,n(7). Parameters
a, b, and 7, are related to A, B, and ¢,, respec~
tively, through A= TR3/261 , 1=B=7;b, and ¢,
=TpN, All these new variables and parameters
have been chosen to be of the order of unity.

The stationary solution of Egs. (2a) and (2b),
denoted by £, and 7, satisfies the relations
| £,[2062+ (| £, = np)?]=a® and | £,|2=n,. The for-
mer relation shows that, if n,>v3b, there exists
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a range of g in which |£, |2 is a threefold function
of a® (Fig. 1). Usually, &, is called bistable in
this range, although this is not always the case.

Equation (2a) has the same form as the optical
Bloch equation, if Ref and Im£ are regarded as
two components of a Bloch vector. The total
phase shift n(7) - n, plays the role of Rabi nuta-
tion frequency and b that of damping. A charac-
teristic of our system is that £ exhibits a self-
induced Rabi nutation as a result of the interplay
between £ and 7 To see this simply, let us lin-
earize Eqgs. (2a) and (2b) with respect to 6& and
6n, small deviations of £ and 7 from their sta-~
tionary values, as follows:

5é=_b6§+i§86n+i(ns—710)55: (32)

Of==0n+ £, 0% + £ *OL, (3b)

Assume that ng >1; then 6¢ oscillates rapidly
with frequency 7n,. This is a Rabi nutation. This |

§(T)=ia1/3b‘ /3, [a2/3(b -1/3 _ b2/3)+ no]l/zexp(iaz/sb -1/37),

T)(T)=a2/3b'1/3+ -

Note that the fundamental frequency of the self-
pulsation @2/3b"'/%y is much smaller than T/t g,
the fundamental frequency in the delay-induced
instability.>S

The simple periodic solution (5a), (5b) is, how-
ever, not always stable. Using a computer we
have found that a solution with a single period
undergoes successive bifurcations and finally gets
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FIG. 1. |£,]® vs a® relation (solid curve) and hyster-
esis among stationary, periodic, and chaotic states for
b=0.3 and ny=5. The solid and open circles indicate
the long-time average of |£|? in periodic and chaotic
states, respectively. The broken curve indicates the
average calculated from Eq. (5a).
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oscillation in turn modulates 7 through Eq. (3b).
Consequently, 67 also oscillates with the same
frequency, following 6¢ adiabatically. Thus the
relation 6n=(—-1§,*/n,)6¢ is obtained. Using
this relation in Eq. (3a), we find that the damping
constant for £ is b ~1. Therefore, if the relaxa-
tion time of the medium is shorter than the life-
time of the cavity, i.e., <1, the stationary solu-
tion is unstable and the Rabi nutation is self-
induced.

Detailed analysis of the linear stability reveals
that the lower branch of the |£,|? vs a? relation
(Fig. 1) is always stable, while the upper branch
becomes unstable if

(b—l)(lgs ,2—7]0)2—(153 lz_no)no+b(b+1)2>0
(4)

is satisfied. For |&,[>1, this reduces to b<1.

In the case where a>1 and 7n,> 1, the explicit
form of the stationary nutation is obtained beyond
the linear theory as follows:

(5a)
(5b)

into a chaotic state when parameters ¢ and b are
suitably varied. Figure 1 shows a typical example
of hysteresis among stationary, periodic, and
chaotic states obtained by varying a for fixed b.
Figure 2 is a phase diagram of the states that ap-
pear when a is slowly decreased from a sufficient-
ly large value.? If a is decreased beyond the bold

1P
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FIG. 2. Phase diagram of the states that appear when
a is slowly decreased from a sufficiently large value
(my=5). Symbol nP denotes the domain of limit cycles
with period n. The broken lines indicate the upper and
lower limits of the threefold range in the |¢ sl2 vs a® re-
lation.
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curve in Fig. 2, a jump occurs to the stationary
state on the lower branch, no stationary state on
the upper branch being realized. The domain of
chaotic states is surrounded by the domains of
limit cycles with period 2" as usual.!® The power
of the output electric field from the cavity there-
fore exhibits period doubling (or successive sub-
harmonic) bifurcations in the vicinity of the bound-
ary of the chaotic domain, as seen in Figs. 3(a)-
3(e). The time average of the output power and
the fundamental frequency in the chaotic regime
agree considerably well with those obtained by
Eq. (5a), the values for the limit cycle with a
single period (Fig. 1). Further, the chaotic
states appear only for values of a for which the

| £5|% vs a? relation is threefold. These facts en-
able us to interpret the chaos in our system as a
self-induced Rabi nutation subjected to a distur-
bance; the disturbance is considered to be caused

20 T T v T (a)
10
20 T T T T ‘ (b)
10 !
2 T T T

0 (c)

2
1€1° 1

20 - ' - ; ()
10
20 T T T T (e)
10 1

0 10 20 30 20 50

T

FIG. 8. Period-doubling bifurcations of self-pulsa-
tion for  =0.3 and ny=5: (a) period 1 (a=5.4), (b) peri-
od 2 (a=4.6), (c) period 4 (a=4.0), (d) period 8 (a
=3.84), and (e) chaotic (a=23.5).

by the unstable stationary state on the intermedi-
ate (negative-slope) branch.

Regarding Eq. (2a) as an optical Bloch equation,
we see that Eqs. (2a) and (2b) have resemblance
to the laser rate equation'! or the Lorenz equa-
tion.’? The Lorenz equation, however, admits
no multiple stationary solution. Therefore, the
chaos in our system should have an origin quite
different from the Lorenz chaos.

Unlike the strong or fully developed turbulence
seen in the delay-induced instability,® the chaotic
state described by Egs. (2a) and (2b) is to be
called a weak turbulence (or chaos). In the turbu-
lence of this type, which is peculiar to three-
dimensional dissipative systems,'® the orbit
in phase space is restricted on a quasi two-di-
mensional invariant manifold [ Fig. 4(a)]. This
fact is in our case well understood by using a
topologically equivalent model illustrated in Figs.
4(b)-4(d). The rotation along the Mo0bius sheet
corresponds to the Rabi nutation around an un-
stable stationary state on the upper branch of the
[£,]2 vs a® relation. The chaotic behavior of the
orbit originates from an unlimited deformation
of the sheet, i.e., an endless repetition of expan-
sion | Fig. 4(b)] and folding [ Fig. 4(c)] in the
direction perpendicular to the rotation.

In conclusion, we have pointed out the possibil-
ity of a new kind of instability in an optical cavity
having multiple stationary states. This instabil-

(a)

(d)

FIG. 4. (a) Orbit of a chaotic solution in phase space.
(b)—(d) A topological illustration of the formation of a

quasi two-dimensional manifold on which the chaotic
orbit is restricted.
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ity takes place when the relaxation time of the
medium is shorter than the lifetime of the cavity,
i.e., 1-R+al/2<tg,” and can be interpreted
as a self-induced Rabi nutation of the electric
field vector. For a Fabry-Perot cavity contain-
ing a Kerr medium, the incident power required
for the occurrence of this instability is given by
[4a%(¢zy)%/(1 = R)kin,] x10~° MW /cm?; its typical
value is estimated to be 10 MW /cm? by using #,
~10"" esu,™ I~1.5 cm, £~10° cm™, gy ~0.1,
and R=0,97, Thus the instability discussed in
this Letter will be observed for a smaller inci-
dent power as compared with the delay-induced
instability, if a medium of the same length is
used.® The experiment will be free from trans-
verse focusing effects, because the induced phase
phase shift is sufficiently small.

Discussions with I. Tsuda are gratefully ac-
knowledged.
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A simple model for ion radial transport in the resonant plateau regime is derived.
It is shown that the ion diffusion coefficient is insensitive to the radial electric field
over a wide range of parameters. With use of this result, and the expression for the
electron flux, a self-consistent picture of ambipolar tandem operation for quadrupole
symmetric systems is obtained and compared with experiment.

PACS numbers: 52.55.Ke, 52.25.Fi

The success of the tandem mirror' as a viable
fusion reactor depends in part on keeping the ra-
dial particle loss rate small compared to end
losses, in order that the gain of electrostatic end
plugging not be outweighed by radial transport.
Additionally, the radial variation of the electro-
static potential, which, as will be seen, is coup-
led to the radial transport problem, is itself of

central concern since the tandem concept requires
a confining potential for solenoid ions on field
lines away from, as well as along, the machine
axis. In this Letter, a simple model for the ra-
dial ion flux in the resonant plateau (RP) regime
is derived. With use of a previously obtained re-
sult for the electron flux,? a self-consistent pic-
ture of ambipolar tandem operation is obtained.
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