Fixed-Point Structure of $(\varphi^6)_3$ at Large N

Robert D. Pisarski

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 14 December 1981)

For a N-component isovector field φ , $(\varphi^6)_3$ is free in the infrared limit for all N. If N is sufficiently large there is also an ultraviolet stable fixed point, calculable within perturbation theory, at which anomalous dimensions are $\sim N^{-1}$.

PACS numbers: 11.10.Lm, 05.70.Jk, 11.10.Jj

The existence of logarithmic corrections to scaling about a tricritical point in three dimensions is well known.^{1,2} Here I consider the corresponding field theory, $(\varphi^6)_3$, for its intrinsic interest. When N is large, I demonstrate that $(\varphi^6)_3$ provides a *unique* example of a field theory, with no dimensional couplings,³ which has a nontrivial ultraviolet limit calculable from perturbation theory by use of the renormalization group.

In three (Euclidean) dimensions, the Lagrangian density is

$$\mathcal{L} = Z_{\varphi} \frac{(\partial_{i} \overline{\varphi})^{2}}{2} + Z \frac{\pi^{2}}{3} \lambda (\overline{\varphi}^{2})^{3} + Z_{\varphi^{2}} \frac{\overline{\varphi}^{2}}{2} J_{\varphi^{2}} + Z_{\varphi^{4}} \frac{(\overline{\varphi}^{2})^{2}}{4!} J_{\varphi^{4}} .$$
(1)

 $\overline{\varphi}$ is a *N*-component isovector. The coefficient of the dimensionless coupling λ is chosen in anticipation of the final results. The couplings for φ^2 and φ^4 are adjusted to vanish exactly. In the tricritical phase diagram, this corresponds to sitting right on the tricritical point. J_{φ^2} and J_{φ^4} are sources for single⁴ insertions of the operators φ^2 and φ^4 .

I renormalize the theory by using dimensional regularization in $3 - \epsilon$ dimensions with minimal subtraction.⁵ This renormalization scheme is particularly convienient since once the φ^2 and φ^4 couplings are set to zero at the tree level, radiative corrections will not alter them. In $3 - \epsilon$ dimensions, the coupling λ should be replaced by $\lambda \mu^{2\epsilon}$, where μ is a mass scale at which the values of the renormalized Green's functions are defined.

The calculations I perform essentially duplicate those of Lewis and Adams,⁶ who determined tricritical exponents in $3 - \epsilon$ dimensions at next to leading order in ϵ . Nevertheless, because of the dependence of the β function in $3 - \epsilon$ dimensions on the renormalization scheme,⁷ an independent calculation was necessary. Further, what is of general interest are the conclusions I draw concerning the $N \rightarrow \infty$ limit and the validity of the ϵ expansion, which are original.

17-1

By standard methods⁸

$$\beta = -\epsilon \left[\frac{\partial}{\partial \lambda} \ln \left(\frac{Z\lambda}{Z_{\varphi}^{3}} \right) \right]^{-1} = b_{1}\lambda^{2} - b_{2}\lambda^{3},$$

$$b_{1} = 3N + 22,$$

$$b_{2} = \frac{1}{32}\pi^{2}(N^{3} + 34N^{2} + 620N + 2720)$$

$$+ \frac{1}{4}(53N^{2} + 858N + 3304).$$

$$\gamma_{\varphi} = \beta \frac{\partial}{\partial \lambda} \ln Z_{\varphi}$$

$$= \frac{(N+2)(N+4)}{48} \lambda^{2} \left[1 - (N + \frac{22}{3})\lambda \right].$$
(2b)

$$\gamma_{\varphi^{2}} = \beta \frac{\partial}{\partial \lambda} \ln Z_{\varphi^{2}}$$

$$= -\frac{5(N+2)(N+4)}{16} \lambda^{2} (1-c_{1}\lambda),$$

$$c_{1} = \frac{1}{8} \pi^{2} (N+4) (N+14) + \frac{11}{5} (3N+22).$$

$$\gamma_{\varphi^{4}} = \beta \frac{\partial}{\partial \lambda} \ln Z_{\varphi^{4}} = -2(N+4)\lambda (1-c_{2}\lambda),$$
(2c)

$$c_2 = \frac{1}{64} \pi^2 (N^2 + 18N + 116) + \frac{3}{16} (19N + 126).$$
 (2d)

Changes in the renormalization scheme alter λ as $\lambda' = \lambda + O(\lambda^2)$. In the usual manner, it can be shown from their definitions that the first two terms of β , but only the first terms of the γ 's, are left invariant under $\lambda - \lambda'$.

In the infrared limit the coupling vanishes logarithmically. Equation (2a) can be used to find the leading universal correction to this approach:

$$A(p) \sim_{p \ll \mu} \frac{b_1^{-1}}{-\ln p/\mu} + \frac{b_2}{b_1^{-3}} \frac{\ln(-\ln p/\mu)}{(\ln p/\mu)^2} + O((\ln p/\mu)^{-2}).$$
 (3)

There is an ultraviolet stable fixed point λ^* for all N. For small N, λ^* could be an illusion of

perturbation theory. In contrast, as $N \rightarrow \infty$,

$$\lambda^{*} = \frac{96}{\pi^{2}} \frac{1}{N^{2}}, \quad \gamma_{\varphi}^{*} = \frac{192}{\pi^{4}} \frac{1}{N^{2}},$$

$$\gamma_{\varphi^{2}}^{*} = \frac{31680}{\pi^{4}} \frac{1}{N^{2}}, \quad \gamma_{\varphi^{4}}^{*} = \frac{96}{\pi^{2}} \frac{1}{N},$$
 (4a)

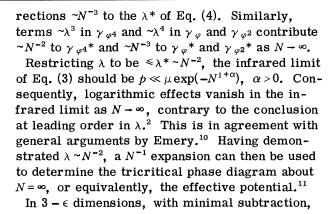
where $\gamma^* = \gamma(\lambda^*)$, and

$$\lambda(p) \underset{p \to \mu}{\sim} \lambda^* - \frac{\delta \lambda}{(p/\mu)^{288/\pi^2 N}}, \qquad (4b)$$

 $\delta \lambda = \lambda^* - \lambda(\mu)$, $\delta \lambda > 0$. When $N \to \infty$, λ^* and the γ^* vanish, and so assuredly λ^* exists for large N.⁹ Since the asymptotic values of Eq. (4a) agree with the results obtained from Eq. (2) to $\leq 16\%$ when $N \geq 1000$, I presume that λ^* exists at least when $N \geq 1000$. Within perturbation theory, a better estimate could be given by calculating the corrections in N^{-1} to Eq. (4).

To illustrate the nature of the theory for large N, consider the graphs contributing to Eq. (4). λ^* is $\sim N^{-2}$ as $N \rightarrow \infty$ because there is a single graph, shown in Fig. 1, which contributes at $\sim N^3 \lambda^3$ to β . $\gamma_{\varphi^4}^*$ is a sum of two terms, $\sim N \lambda$ and $\sim N^3 \lambda^2$, where the term $\sim N^3 \lambda^2$ is obtained from a single graph related to Fig. 1. $\gamma_{\varphi^2}^*$ is also a sum of two terms, $\sim N^2 \lambda^2$ and $\sim N^4 \lambda^3$, with four graphs contributing at $\sim N^4 \lambda^3$. While two of the graphs $\sim N^4 \lambda^3$ are related to Fig. 1, two are topologically distinct. One is shown in Fig. 2; the other is a finite graph $\sim N^3 \lambda^2$ with a λ counterterm. γ_{φ}^{*} is rather uninteresting, as the leading term in λ , $\sim N^2 \lambda^2$, is the only term $\sim N^{-2}$ as $N \to \infty$. As could be expected physically, all contributions to Eq. (4) are independent of the renormalization scheme.

Including terms of higher order in λ in Eq. (2) affects Eq. (4) at higher order in N^{-1} . This would not be true if as $N \rightarrow \infty$ there were graphs with an additional factor of $\sim N^2$ for each new order in λ . Fortunately, graphs only increase as $\sim N^2$ at every other order in λ , and otherwise $\sim N$. For example, while for β there are graphs $\sim N\lambda^2$ and $\sim N^3\lambda^3$, it can be shown that the graphs at higher order are at best $\sim N^4\lambda^4$ and $\sim N^6\lambda^5$. These terms at $\sim \lambda^4$ and $\sim \lambda^5$ simply generate cor-



$$\beta_{3-\epsilon}(\lambda) = -2\epsilon\lambda + b_1\lambda^2 - b_2\lambda^3, \qquad (5)$$

 $\gamma_{3-\epsilon}(\lambda) = \gamma(\lambda)$. There are three fixed points when $\epsilon \ll 1$: an infrared stable point $\lambda_{ir} *(\epsilon) \sim 2\epsilon/b_1 + O(\epsilon^2)$, and ultraviolet stable points at $\lambda = 0$ and $\lambda_{uv} *(\epsilon) = \lambda^* - \lambda_{ir} *(\epsilon) + O(\epsilon^2)$. As ϵ increases, so does $\lambda_{ir} *(\epsilon)$ while $\lambda_{uv} *(\epsilon)$ decreases. For all *N* there is an ϵ_c at which $\lambda_{ir} *(\epsilon_c) = \lambda_{uv} *(\epsilon_c)$, where $\lambda^*(\epsilon_c)$ has marginal stability. When $\epsilon > \epsilon_c$, $\lambda_{ir} *(\epsilon)$ and $\lambda_{uv} *(\epsilon)$ are complex, and the only fixed point is $\lambda = 0$. As $N \to \infty$,

$$\epsilon_c = \frac{36}{\pi^2} \frac{1}{N} , \qquad (6)$$

independent of the renormalization scheme. In this way, the existence of λ^* , and thereby ϵ_c , provides a natural limit on the radius of convergence for the ϵ expansion at $\lambda_{ir}^*(\epsilon)$. What controls tricritical behavior when $\epsilon > \epsilon_c$, such as at $\epsilon = 1$, is unclear.

It is reasonable to speculate that λ^* and ϵ_c exist for all $N \ge 0$, not just $N \ge 1000$. In support of this, it is found that if Eq. (2) is used blindly, the γ^* are small for every $N \ge 0$. The largest $|\gamma^*|$ is usually $|\gamma_{\varphi^4}^*|$, whose maximum is only $\gamma_{\varphi^4}^* \sim -0.053$ at N=3. In addition, the largest ϵ_c is merely $\epsilon_c \sim 0.040$ at N=10. Thus ϵ_c is very possibly <1 whenever $N \ge 0$. Of course, for small $N\lambda^*$, the γ^* and ϵ_c do depend on the renormalization scheme.

What is needed to study λ^* and ϵ_c for small N are strong-coupling techniques. Approximate recursion relations have been used by Wilson¹²

FIG. 1. The only graph $\sim N^3 \lambda^3$ in β .

FIG. 2. A graph $\sim N^4 \lambda^3$ in γ_{φ^2} . The cross denotes an insertion of the operator φ^2 .

for $(\varphi^6)_3$ at N = 1. He finds a renormalized theory with interaction, but one very different from perturbation theory: although $\gamma_{\varphi^2} \neq 0$, there is no wave-function or coupling-constant renormalization! Clearly further study would be helpful.

Lastly, it is hoped that $(\varphi^6)_3$ can serve as a test for methods used to determine the existence of a renormalized $(\varphi^4)_4$ theory. Evidence for a λ^* in $(\varphi^4)_4$ has been presented, ¹³ but is not seen by approximate recursion relations, ^{12, 14} strongcoupling expansions, ^{14, 15} or Monte Carlo simulations. ¹⁶ $(\varphi^6)_3$ is admittedly very different from $(\varphi^4)_4$, ¹⁷ but its example demonstrates that there is a priori no logical necessity for a renormalized $(\varphi^4)_4$ theory to be free.

This research was supported in part by the National Science Foundation under Grant No. PHY77-27084.

¹F. J. Wegner and E. K. Riedel, Phys. Rev. B <u>7</u>, 248 (1973); M. J. Stephen, E. Abrahams, and J. P. Straley, Phys. Rev. B 12, 256 (1975).

²R. D. Pisarski, Phys. Lett. <u>85A</u>, 356 (1981), and 86A, 497(E) (1981).

³Any model which has a dimensionless coupling and is asymptotically free in *D* dimensions will have an ultraviolet stable fixed point $\sim O(\epsilon)$ in $D + \epsilon$ dimensions. This includes the nonlinear σ model in $2 + \epsilon$ dimensions and Yang-Mills fields in $4 + \epsilon$ dimensions. Contrary to $(\varphi^6)_3$, when $\epsilon > 0$ the coupling in these models acquires dimension. A model whose behavior is converse to that of $(\varphi^6)_3$ at large *N*—asymptotic freedom with a calculable infrared stable fixed point—is four-dimensional Yang-Mills fields with sufficiently many fermions [W. Caswell, Phys. Rev. Lett. <u>33</u>, 244 (1974)].

⁴Another counterterm proportional to $\overline{\varphi}^2$ is needed to make multiple insertions of φ^4 finite [see, e.g., *Phase Transitions and Critical Phenomena*, edited by C. Domb and M. Green (Academic, New York, 1976), Sec. VIIID].

⁵G. 't Hooft, Nucl. Phys. B <u>61</u>, 455 (1973).

⁶A. L. Lewis and F. W. Adams, Phys. Rev. B <u>18</u>, 5099 (1978). To leading order in ϵ , see M. J. Stephen and J. L. McCauley, Jr., Phys. Lett. A <u>44</u>, 89 (1973). In $3 - \epsilon$ dimensions, the critical exponents η , γ , and φ

are related to the γ 's at $\lambda_{ir} *(\epsilon)$ [Eq. (5)] by $\eta = \gamma_{\varphi} *$, $\gamma = (2 - \eta)/(2 - \eta + \gamma_{\varphi} *)$, $\varphi = \gamma(1 + \epsilon - 2\eta)/(2 - \eta) + \frac{1}{2}\gamma\gamma_{\varphi} 4 *$. The new result of Eq. (2) is $\gamma_{\varphi} 2$ to $\sim O(\lambda^3)$, which yields γ to $\sim O(\epsilon^3)$.

⁷In $3 - \epsilon$ dimensions, $\sim O(\lambda^3)$ is the third term in β [Eq. (5)], and thus can depend on the renormalization scheme. $\lambda_{ir}^*(\epsilon)$ to $\sim O(\epsilon^2)$ with minimal subtraction is obtained from Eq. (8) of Lewis and Adams (Ref. 6) by setting their cutoff-dependent constant *C* equal to zero.

⁸E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and M. Green (Academic, New York, 1976).

⁹With use of a N^{-1} expansion about $N = \infty$, the existence of λ^* in $(\varphi^6)_3$ has been noted by P. K. Townsend, Nucl. Phys. B <u>118</u>, 199 (1977); and T. Appelquist and U. Heinz, Yale University Report No. YTP82-01 (to be published). These authors assert that λ^* is inaccessible from perturbation theory in λ , and can only be seen by a N^{-1} expansion. In contrast, when N is large I determine λ^* directly from perturbation theory. The λ^* 's found by these authors do not agree with the value of Eq. (4a); they do not evaluate any γ^* . I would like to thank T. Appelquist for sending me a draft of the above, which was received after this manuscript was completed.

¹⁰V. J. Emery, Phys. Rev. B <u>11</u>, 3397 (1975).

¹¹For the N^{-1} tricritical phase diagram, see S. Sarbach and M. E. Fisher, Phys. Rev. B <u>20</u>, 2797 (1979), and references therein. The N^{-1} effective potential was computed by P. K. Townsend, Phys. Rev. D <u>12</u>, 2269 (1975), and <u>14</u>, 1715 (1976); T. Appelquist and U. Heinz, Phys. Rev. D <u>24</u>, 2169 (1981), and Ref. 9.

¹²K. G. Wilson, Phys. Rev. D <u>6</u>, 419 (1972).

¹³N. N. Khuri, Phys. Lett. <u>82B</u>, 83 (1979).

¹⁴K. G. Wilson and J. Kogut, Phys. Rep. <u>12C</u>, 75 (1974).

¹⁵G. A. Baker and J. Kincaid, Phys. Rev. Lett. <u>42</u>, 1431 (1979), and J. Stat. Phys. <u>24</u>, 469 (1981); C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies, and D. Sharp, Los Alamos Reports No. LA-UR-81-139, 1981, and No. LA-UR-81-397, 1981 (to be published).

¹⁶B. Freedman, P. Smolensky, and D. Weingarten, Indiana University Report No. IUHET 68, 1981 (to be published).

¹⁷For example, with use of β for $(\varphi^4)_4$ to the same order as Eq. (5) (Ref. 8) $\epsilon_c \sim 0.381$ at N=0, increasing monotonically to $\sim N/36$ as $N \rightarrow \infty$. This is reassuring, since surely ϵ_c , if it exists in $(\varphi^4)_{4-\epsilon}$, is >1 for all $N \ge 0$.