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For a Ã-component isovector field y, (y )& is free in the infrared limit for all ¹
If N

is sufficiently large there is also an ultraviolet stable fixed point, calculable within per-
turbation theory, at which anomalous dimensions are N
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The existence of logarithmic corrections to
scaling about a tricritical point in three dimen-
sions is well known. " Here I consider the cor-
responding field theory, (q )„ for its intrinsic
interest. When N is large, I demonstrate that
(y'), provides a unique example of a field theory,
with no dimensional couplings, which has a non-
trivial ultraviolet limit calculable from perturba-
tion theory by use of the renormalization group.

In three (Euclidean) dimensions, the Lagrang-
ian density is
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general interest are the conclusions I draw con-
cerning the N- ~ limit and the validity of the e

expansion, which are original.
By standard methods'
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y is a N-component isovector. The coefficient
of the dimensionless coupling A, is chosen in an-
ticipation of the final results. The couplings for
y' and y' are adjusted to vanish exactly. In the
tricritical phase diagram, this corresponds to
sitting right on the tricritical point. Jp2 and +p4
are sources for single' insertions of the opera-
tors y2 and y4.

I renormalize the theory by using dimensional
regularization in 3 —e dimensions with minimal
subtraction. ' This renormalization scheme is
particularly convienient since once the y' and
y4 couplings are set to zero at the tree level,
radiative corrections will not alter them. In
3 —e dimensions, the coupling A. should be re-
placed by A. p,", where p, is a mass scale at
which the values of the renormalized Green's
functions are defined.

The calculations I perform essentially duplicate
those of Lewis and Adams, ' who determined tri-
critical exponents in 3 —c dimensions at next to
leading order in &. Nevertheless, because of the
dependence of the p function in 3 —c dimensions
on the renormalization scheme, ' an independent
calculation was necessary. Further, what is of
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Changes in the renormalization scheme alter A.

as A. '=A. +O(A.'). In the usual manner, it can be
shown from their definitions that the first two
terms of P, but only the first terms of the y's,
are left invariant under A. —A. '.

In the infrared limit the coupling vanishes loga-
rithmically. Equation (2a) can be used to find
the leading universal correction to this approach:

b, ' b, In(-Inp/p)
'~ „„-lnp/p, b, (lnp/p. )

2

+ O((lnp/p) ').
There is an ultraviolet stable fixed point A. * for

all N. For small Ã, A* could be an illusion of

574 1982 The American Physical Society



VOLUME 48, NUMBER 9 PHYSICAL REVIEW LETTERS I MARCH 1982

perturbation theory. In contrast, as N —~,
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where y*=y(A, *), and
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Q. = A. *-X( p), Q. & 0. When N -~, A.
* and the y*

vanish, and so assuredly A. * exists for large X.'
Since the asymptotic values of Eq. (4a) agree
with the results obtained from Eq. (2) to & 16%
when N ~ 1000, I presume that A. * exists at least
when N & 1000. Within perturbation theory, a
better estimate could be given by calculating the
corrections in N ' to Eq. (4).

To illustrate the nature of the theory for large
N, consider the graphs contributing to Eq. (4).
X* is -N ' as N- because there is a single
graph, shown in Fig. 1, which contributes at

N'A't-o P. . y ~4* is a sum of two terms, -NA and
-N'A. ', where the term -N'X' is obtained from a
single graph related to Fig. 1. y~2* is also a
sum of two terms, -NBA'and N'A'. , w-ith . four
graphs contributing at -N A.'. While two of the
graphs -N'A. ' are related to Fig. 1, tmo are to-
pologically distinct. One is shown in Fig. 2; the
other is a finite graph -N'A, ' with a A. counterterm.
y ~* is rather uninteresting, as the leading term
in A,, -N'A. ', is the only term -N ' as Ã- ~. As
could be expected physically, all contributions
to Eq. (4) are independent of the renormalization
scheme.

Including terms of higher order in A. in Eq. (2)
affects Eq. (4) at higher order in N '. This
would not be true if as N —~ there were graphs
with an additional factor of -NP for each new
order in A.. Fortunately, graphs only increase
as -N' at every other order in A. , and otherwise
-N. For example, while for P there are graphs
-NA. ' and -N'A. ', it can be shown that the graphs
at higher order are at best -N'A'and -N' A'. . .

These terms at -A.' and -A.' simply generate cor-

rections -N ' to the A. * of Eq. (4). Similarly,
terms -A.' in y ~~ and -A.' in y ~ and y ~2 contribute
-N ' to y ~4* and -N ' to y ~* and y ~2* as N —.

Restricting X to be A, *-N ', the infrared limit
of Eq. (3) should be p«p, exp(-N""), n&0. Con-
sequently, logarithmic effects vanish in the in-
frared limit as N -~, contrary to the conclusion
at leading order in A..' This is in agreement with
general arguments by Emery. " Having demon-
strated ~ -N ', a N ' expansion can then be used
to determine the tricritical phase diagram about
N = ~, or equivalently, the effective potential. "

In 3 —e dimensions, with minimal subtraction,

ps, (A,) = 2e-A + b,A, —b2A. ,

y, ,(A) =y(A). There are three fixed points when
e «1: an infrared stable point A. ;, *(e) -2~/b,
+O(~'), and ultraviolet stable points at A. =0 and

x„„*(e)=A.*-A.;, *(e)+O(e'). As e increases, so
does A, ;, *(&) while A. „„*(e)decreases. For all N
there is an e, at which A. ;, *(e,) =A. „„*(e,), where
A. *(e,) has marginal stability. When e & e„A.;,*(e)
and A „„*(e)are complex, and the only fixed point
is ~=0. As N-~,

36
(6)c=r2 N

independent of the renormalization scheme. In
this way, the existence of A. *, and thereby e„
provides a natural limit on the radius of conver-
gence for the e expansion at A. ;, *(e). What con-
trols tricritical behavior when & & &„ such as at
a=1, is unclear.

It is reasonable to speculate that A.
* and ~,

exist for all N ~0, not just N ~1000. In support
of this, it is found that if Eq. (2) is used blindly,
the y* are small for every N ~ 0. The largest

~
y* [ is usually

~ y ~~*), whose maximum is only
y~4*--0.053 at N =3. In addition, the largest
e, is merely e, -0.040 at N=10. Thus ~, is very
possibly &1 whenever N ~0. Of course, for
small NA, *, the y* and e, do depend on the re-
normalization scheme.

What is needed to study A.
* and e, for small N

are strong-coupling techniques. Approximate
recursion relations have been used by Wilson"

/
FIG. 1. The only graph -N~A~ in P.

p&G. 2. A graph -N p~ in y~2. The cross denotes an
insertion of the operator y~.
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for (y'), at N =1. He finds a renormalized theory
with interaction, but one very different from per-
turbation theory: although y ~2&0, there is no
wave-function or coupling-constant renormaliza-
tion t Clearly further study would be helpful.

Lastly, it is hoped that (y'), can serve as a test
for methods used to determine the existence of
a renormalized (q'), theory. Evidence for a A,

*
in (y'), has been presented, "but is not seen by
approximate recursion relations, "' strong-
coupling expansions, "'"or Monte Carlo simula-
tions. " (qP), is admittedly very different from
(q')4, "but its example demonstrates that there
is a Priori no logical necessity for a renormal-
ized (y'), theory to be free.
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