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Exact First-Order Electron Self-Energy Contribution to the Decay Rate of Orthoyositronium
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There is presently a discrepancy between the theoretical and the experimental deter-
minations of the purely quantum electrodynamic decay rate for orthopositronium. This
Letter presents the first exact calculation of any contribution to the decay rate of ortho-
positronium to order n~.

PACS numbers: 12.20.Ds, 36.10.Dr

The decay rate of orthopositronium is of spe-
cial interest in quantum electrodynamics since
it is defined to high accuracy by purely electro-
dynamic interactions. In this paper the exact
electron self-energy contribution to this decay
rate is formulated and explicitly derived in the
Feynman gauge.

The decay rate of orthopositronium is of the
fol m

to the orthopositronium decay rate are shown in
Fig. 1. The exact matrix element and the decay
rate for the electron self-energy contribution
were formulated in the Feynman gauge and are

where X(K„K,) represents the decay matrix, K,
=K~;/mc', n is the fine-structure constant, 5 is
Planck's constant, @co, is the energy of photon i,
and mc' is the electron rest energy. The lowest-
order, nonradiative decay rate is'
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The lowest-order radiative corrections to this re-
sult were first calculated numerically"' by Stro-
scio and Holt and later by Caswell and co-work-
ers,+' who found significant corrections to the
binding-energy term. '

The Feynman diagrams for the nonradiative,
a', and electron self-energy, a', contributions

FIG. 1. Feynman diagrams for the nonradiative
{n } and the electron self-energy {n } contributions to
the decay rate of orthopositronium. The initial state
contains an electron, e, and a positron, e+, while the
final state contains three photons of frequencies ~&,

and A3.
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given by

6 2

where

P [P,(K„K,)Z, (K,)+P,(K„K,)Z, (K,)],~1K2K3g
(4)

with Z, (K,) and Z, (K,) being the standard electron self-energy parts" and'

Pi(K2IK~) = —16K2+24K2 + 36K2 Ks —8K2 —56K2 K~+ 16K22K32+4K2~K3,

P2 (K2,K3) = 16K2 + 16K2KS —32K2 —56K2 Ks + 16K2~ + 36K2 K3 + 28K2 K~ —4K2~K~ —20K23K3 .

(7)

6 2

I "+ "-,-- "+ "+4I "+ I -+16I,"-32I,--56I"
bc ]2&@. &

6 2

+ 16I2 + 36I2 + 28I2 - 4I2~i —20I2S J+— — (w2 —9) ln — . (8)

In Eq. (4) the summation over the six permutations corresponds to the six permutations of (d22 ar» and

u, in the final state of the diagrams of Fig. 1. Herein, x/m represents the photon mass divided by the
electron mass and is included to isolate the infrared-divergent terms in I„.

The integrals in I'„areof the form

I = f dK, f dK2X~(K„K2,K3 = 2 -K, -K2).
1

Using the energy-conservation condition, K3= 2-E, -K„andchanging variables it follows that K„K„
and K, may be interchanged under the integral in Eq. (7) without changing the value of I. This result is
a consequence of the limits of integration on K, and K, and allows the sum in Eq. (4) to be omitted up-
on multiplying Eq. (4) by a factor of 6. Then

The integrals I," and I," are

E E "Km 1 2 —6EI," =' dK, dK,
(K IC IC ), I-2K 1 1- 2K(n( 2)K),

0 + 1-IC1 1 2 3 1 1

1 1

I "m=
2 1

0 & 1"K1
dK,

(K K K)* 1 —2K
2 ~' 1-2K

' (n(W, )).
1 2 3 1 1

(10)

These integrals have been evaluated and the results are given in Table I.
With Eq. (8) and the results of Table I,
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where f (3) is the Riemann-zeta function of argu-
ment 3 that results from the Spence functions'
frequently encountered in quantum electrodynam-
ic calculations.

Previous numerical approximations'~ to Eq.
(11) have been expressed in terms of the ratio
1 ~/r, . From Eqs. (2) and (11),

4.784 98+4 ln (12)

This numerical coefficient agrees with the value
4.785+0.010 of Stroscio and Holt. ' In fact, a nu-
merical integration of Eq. (8) by Gauss-Legendre
techniques yieMs, for the numerical coefficient

!of Eq. (12), the values 4.784 85 and 4.784 93 for
24- and 32-point integrations, respectively. The
32-point result agrees with the exact result of
Eq. (11) to approximately 1 part in 10'. This is
excellent agreement. On the other hand, the nu-
merical integration of Caswell, Lepage, and
Sapirstein~ resulted in the numerical coefficient
4.791+ 0.003. Both the exact and the precise nu-
merical values of the present work disagree with
the result of Ref. 4.

In summary, the exact electron self-energy
contribution to the decay rate of orthopositronium
to order e has been derived in the Feynman
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TABLE I. The integrals I&" and I2" are defined by multiplying the numerical coefficients in the column under
a particular integral name by the factors 1, x', ln2, vr2 ln2, & (3), M. , In2 ln), and in~A. For example, I,~' =

i(2
n'

+ 1w~ln2+ 2g (3). X replaces 1/m for brevity.

10 I20 11 I30 ~21 22 ~31 ~20 ~11 30 ~21 40 I22 31 41 ~32
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

-2 1/2

1112

17 1
216 3

-4
3

1 5
36 8

1 3 -1
12 8 6

-1 1

-5 -11, -25 -5 -45 -5 1
6 18 24 12 24 8 12

2 2 1 2 -2 1 3

3 -7
4 16
9 1
2

7l 1D2
2 143

162

-265
216

22 -1
27 6

7
36

1
6 24

-47 1
54 3

-269
72

-1
3

3
4

~3
8

-13
24

1n21nA

111
2

1 1
4 4

3 2 3 2 3 2 2 2 2

-1 -1

gauge. This result provides the first rigorous
test of the theoretical uncertainty estimates of
previous numerical calculations. '4 The precise
estimation of numerical uncertainty in many nu-
merical integration routines is very difficult to
accomplish. In addition, in deriving the exact
electron self-energy corrections, symmetry con-
ditions have been identified. This result pro-
vides a benchmark for checking the correctness
of symbol-manipulating algorithms that are de-
signed to evaluate integrals analytically. This is
especially so since the basic integrals in all of
the n' contributions to the orthopositronium de-
cay rate are of the same origin and same rela-
tionship to the Spence functions. Finally, this re-
sult provides the first exact calculation of any n'
contribution to the decay rate of orthopositronium
and there is presently a discrepancy betvreen the
theoretical and the experimental' determinations

for this purely quantum electrodynamic process.
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