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Exact First-Order Electron Self-Energy Contribution to the Decay Rate of Orthopositronium
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There is presently a discrepancy between the theoretical and the experimental deter-
minations of the purely quantum electrodynamic decay rate for orthopositronium. This
Letter presents the first exact calculation of any contribution to the decay rate of ortho-
positronium to order a'.

PACS numbers: 12.20.Ds, 36.10.Dr

The decay rate of orthopositronium is of spe-
cial interest in quantum electrodynamics since
it is defined to high accuracy by purely electro-
dynamic interactions., In this paper the exact
electron self-energy contribution to this decay
rate is formulated and explicitly derived in the
Feynman gauge.

The decay rate of orthopositronium is of the
form?

6, 2
1“=-7-;—7T-9_%"_C_ foldK1 1_1K1dK2X(K1,K2), (1)
where X (K,,K,) represents the decay matrix, K,
=fiw;/mc®, a is the fine-structure constant, 7 is
Planck’s constant, 7w, is the energy of photon i,
and mc? is the electron rest energy. The lowest-
order, nonradiative decay rate is'

_ 2 a’mc®

T 9 &

(7®-9). (2)

The lowest-order radiative corrections to this re-
sult were first calculated numerically®? by Stro-
scio and Holt and later by Caswell and co-work-
ers,*5 who found significant corrections to the
binding-energy term.®

The Feynman diagrams for the nonradiative,
a®, and electron self-energy, a”, contributions

to the orthopositronium decay rate are shown in
Fig. 1. The exact matrix element and the decay
rate for the electron self-energy contribution
were formulated in the Feynman gauge and are
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FIG. 1. Feynman diagrams for the nonradiative
(a®) and the electron self-energy (a’) contributions to
the decay rate of orthopositronium. The initial state
contains an electron, e”, and a positron, e*, while the
final state contains three photons of frequencies w;,
w,y, and ws.
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given by®
1l a c?

L m Jharcy [l dKs X, (KK, (3)

where
2 6 perm.

X G R RKF D PileKo)BiK) +Polks, KT, @
with Z,(K,) and =,(K,) being the standard electron self-energy parts®” and?®

P,(K,,K;)=— 16K, +24K,” + 36K, K, — 8K,® — 56K ,°K ; + 16K ,°K ;* +4K ,°K ,, (5)

P,(K,,K ;)= 16K,” + 16K ,K ; — 32K ,° — 56K ,°K ; + 16K ,* + 36K ,’K ;° + 28K ,°K ; — 4K ,*K s — 20K ,°K ;. (6)

In Eq. (4) the summation over the six permutations corresponds to the six permutations of w,, w,, and
ws in the final state of the diagrams of Fig. 1. Herein, x/m represents the photon mass divided by the
electron mass and is included to isolate the infrared-divergent terms in I, .

The integrals in I',, are of the form

I= foldKlfl_l,{l AKX, (K|, K, K;=2 ~K, -K,). (7)

Using the energy-conservation condition, K;=2 -K, -K,, and changing variables it follows that K ,, K,,
and K, may be interchanged under the integral in Eq. (7) without changing the value of I. This result is
a consequence of the limits of integration on K, and K, and allows the sum in Eq. (4) to be omitted up-
on multiplying Eq. (4) by a factor of 6. Then

6, 2
Ty =T o {= 167,20 +241,%° + 361, = 81,%° = 56,7+ 161, + 41, + 16,% + 161, - 321,%° ~ 561,

+ 161,20+ 361,22 + 28,7 — 41,4 — 20,7} + 2 "‘ﬂ’;c g [( 2 9)1n<%>]. @)

The integrals I,"™ and I,"™ are
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These integrals have been evaluated and the results are given in Table I.
With Eq. (8) and the results of Table I,

_a'mc® | 7. 805 2,87 5, 1049
Toe =702 )76 1206 7 *18 2" T0ad " M2~ T3pq )+ [ (n* -9)1"(,”)], (11)

where £(3) is the Riemann-zeta function of argu- |

ment 3 that results from the Spence functions® of Eq. (12), the values 4.784 85 and 4.784 93 for

frequently encountered in quantum electrodynam- 24- and 32-point integrations, respectively. The
ic calculations. 32-point result agrees with the exact result of
Previous numerical approximations®* to Eq. Eq. (11) to approximately 1 part in 10°. This is
(11) have been expressed in terms of the ratio excellent agreement. On the other hand, the nu-
T,./T,. From Egs. (2) and (11), merical integration of Caswell, Lepage, and
r W\ /o Sapirstein® resulted in the numerical coefficient
#{4.784 98+4 1n<—>] <—> (12) 4,791+ 0.003. Both the exact and the precise nu-
¢ i 4 merical values of the present work disagree with
This numerical coefficient agrees with the value the result of Ref. 4.
4,785+ 0,010 of Stroscio and Holt.? In fact, a nu- In summary, the exact electron self-energy
merical integration of Eq. (8) by Gauss-Legendre contribution to the decay rate of orthopositronium
techniques yields, for the numerical coefficient to order a” has been derived in the Feynman
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TABLE I. The integrals I,"™ and I,"™ are defined by multiplying the numerical coefficients in the column under
a particular integral name by the factors 1, 72, In2, 7%In2, £(3), InA, In2In), and InA. For example, I %' = f =2

+L7r?In2+2¢(3). Areplaces A/m for brevity.

31 20 11 30 21 40 22 31 41 32
I1 Il Il I1 Il Il Il I2 I2 I2 I2 12 12 I2 I 12
1 1 =2 1/2
2|1 1 1 5 1 3 -1 -5 -11.-25 -5 45 -5 1 3 -7
216 3 36 8 12 8 6 6 18 24 12 24 8 12 4 16
1n2 —_4_ -2 -3 -1 1 2 2 1 2 -2 1 3 2 1
3 2
w’ln2 | 143 22 -1 1 -1 47 1 -1 3 -3 13
162 27 6 6 24 54 3 3 4 8 24
z(3) -265 7 =2 2 4 -269 4 -4 12 -6 -8
216 36 72
1n) 1 1 1 3 2 3 2 3 2 2 2 2
1n21n) -4 =4 -4 2 2 =2 2 =2 =2 -2 =2
ln2>\ -1 -1 -1 -1 -1 -1 -1 -1 -1

gauge. This result provides the first rigorous
test of the theoretical uncertainty estimates of
previous numerical (v:a.ICulations.Z"1 The precise
estimation of numerical uncertainty in many nu-
merical integration routines is very difficult to
accomplish. In addition, in deriving the exact
electron self-energy corrections, symmetry con-
ditions have been identified. This result pro-
vides a benchmark for checking the correctness
of symbol-manipulating algorithms that are de-
signed to evaluate integrals analytically. This is
especially so since the basic integrals in all of
the a” contributions to the orthopositronium de-
cay rate are of the same origin and same rela-
tionship to the Spence functions. Finally, this re-
sult provides the first exact calculation of any a”
contribution to the decay rate of orthopositronium
and there is presently a discrepancy between the
theoretical and the experimental® determinations

for this purely quantum electrodynamic process.
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Ref. 6 provides an excellent review of the current
status with regard to experimental determinations of
the decay rate of orthopositronium.
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