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A. M. Jayannavar and N. Kumar
DePa&ment of Physics, Indian Institute of Science, Bangaloxe 560012, India

(Received 10 December 1981)

For a dynamicaOy disordered continuum it is found that the exact quantum mechanical
mean square displacement (x (t)) t, for t—~. A Gaussian white-noise spectrum is
assumed for the random potential. The result differs qualitatively from the diffusive be-
havior well known for the one-band lattice Hamiltonian, and is understandable in terms
of the momentum cutoff inherent in the lattice, simulating a "momentum bath. "
PACS numbers: 72.10.Bg, 05.40.+j

In recent years there has been growing interest
in the study of quantum diffusion in a randomly
fluctuating medium. ' ' The existing theoretical
treatments are based almost entirely on the
lattice (L) Hamiltonian, namely the tight-binding
one -band Hamiltonian'

in obvious notation. The dynamical disorder is
introduced by treating the potentials, i.e., the
site-diagonal and the off-diagonal matrix ele-
ments, as random c-number variables, evolving
stochastically in time. Such a time dependence
is known to arise from the random modulation
of the potential by the incoherent lattice vibra-
tions of thermal origin. It must be emphasized
here that in all the treatments referred to above,
as also in the treatment to follow, this time de-
pendence is taken to be parametric in that the
potential is supposed to introduce no additional
dynamical degrees of freedom in the problem.
For the Gaussian choice of randomness having
a white-noise spectrum, i.e., 6 correlated in
time but arbitrarily correlated in space, the
problem has been solved exactly by several
workers. " In all cases one obtains a classical
diffusive behavior in that the mean square dis-
placement (x'(t ) &

- t, for t —~, implying a well-
defined diffusion constant and hence mobility.
This common result, however plausible and ex-
pected from the physical point of view, is sur-
prising when analyzed more carefully. Indeed,
as the following exact treatment reveals, for the
corresponding continuum problem we have (x'(t) &- t' asymptotically, implying nondiffusive motion.
Thus, the diffusive behavior obtained by the
other workers is due presumably to the specific
nature of the one-band lattice, &amiltonian. To
the best of our knowledge this rather fundamental
point has not been noticed so far. This has
prompted us to report our findings.

In order to appreciate this point fully it is
expedient to consider first the related problem
of classical diffusion a la Langevin equation in
a spatial one-dimensional continuum:

m du/dt = —I'u +f(t), (2)

where the fluctuating random force f(t) and the
concomitant dissipation represented by the fric-
tional coefficient I" are related by the fluctuation-
dissipation theorem, i.e.,

(f(t)f(t')&=2k, Tr C(t —t') = ~'O(t -—t').
As is well known this gives a mean square dis-
placement (x'(t))-2Dt, for t-~, defining the
diffusion constant D=ksT/I . If, however, we
omit the dissipative term (-Fu) from Eq. (2),
i.e., we set

m du/dt =f(t),
we can readily show that

(x'(t)&-(~'/4m')t', for t-
This implies a nondiffusive random motion.
Here the particle continues to absorb energy
from the fluctuating force and accelerates indef-
initely. In short the particle "heats up" to an
infinite temperature. Now, the quantum mech-
anical treatment based on the Hamiltonian B~
in Eq. (1) corresponds precisely to this nondis-
sipative classical system in that no dissipation
is incorporated explicitly in B~. And yet the
mean square displacement calculated exactly
from Eq. (1) shows a diffusive behavior as noted
abave. " In the following, we address ourselves
to this paradoxical situation. More specifically,
we will first show that the exactly solvable con-
tinuum analog of Eq. (1) also reproduces t' be-
havior as in Eq. (4). We then argue that the dif-
fusive behavior obtained by other workers re-
ferred to above is entirely due to the one-band
lattice nature of the Hamiltonian given in Eq. (1).

To this end we will now obtain an exact solution
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of the quantum problem in a continuum. For
simplicity we shall treat the case of one space
dimension. Generalization to arbitrary dimen-
sion is straightforward. The quantum evolution
is now given by the time-dependent Schrodinger
equation,

ta, ' =—,' + V(x, t) y(x, t), (S)
&g(x, t) ti' &'y(x, t)

2m

where V(x, t) is the stochastic potential assumed
to be Gaussian, with space-time correlation

(V(x, t)V(x, t')) =V,'e(t-t )g(x —x').

The physical quantities of interest can be con-
veniently expressed in terms of the reduced den-
sity matrix ( p(x ', x, t) ), where

p(x', x, t) =y*(x't)j(x, t).

and the angular brackets denote the average over
the stochastic potential. Clearly p(x', x, t) is a.

functional of the Gaussian random variable V(x, t)
and hence the Novikov theorem' applies. Follow-
ing essentially the earlier treatments, "we get
the equation of motion

8 ih 2—(p(x', x, t))=—,— „(p(x',x, t)) —;[g(0) -g(x -x')] (p(x', x, t)) . (8)

This has to be solved subject to the initial condition that the particle was prepared initially in a wave
packet centered at the origin, x =O. We shall take conveniently

p(x', x, t=O) =)*(x', t=o)y( xt=O),

where

g(x, t =0) = [(2&)~'o'~ ] 'exp(-x'/4v') .

This ensures correct normalization, f p(x, x, t =0)dx =1. Here & denotes the spatial spread of the
initial wave packet. Because of the unbounded nature of the kinetic energy operator in the continuum
limit, it is necessary to choose a wave packet with o&0. The asymptotic (t-~) behavior is, of course,
independent of the precise form of the wave packet. This problem does not arise in the case of the
lattice Hamiltonian H~ which is bounded. Equation (8) can be solved by first taking the time Laplace
transform and then considering the resulting hyperbolic equation in the two independent variables x
and x'. We get

2ih
& R(X, 1', s) + s + „', g(0) — ', g(y) R(X, Y, s) = R(X, Y, t = 0), (10)

where we have introduced the characteristic coordinates X =x +x', F=x -x'. Here s is the Laplace
transform variable. We have defined

R(X, y', t)=p(x', x, t); R(X, 1', s) =J R(x, 1', t)e "dt. -

The mean square displacement can be expressed as

(x'(t)) = -— —,R(K, 1' =0, t)
1 82—
8 eZ2 (12)

with

JT(K, &, t)= J R(X, l', t)e'" dX.

Here an overbar denotes the spatial Fourier transform while a tilde denotes the time Laplace trans-
form Equation. (12) holds provided R(K, l" =0, t) is analytic in K at K=0.

Equation (10) can be converted into an ordinary differential equation in l' by taking Fourier transform
with respect to X, which can then be solved readily subject to the initial condition to give

n'1" v ' 2a iK i
1'

R(K, Y'=0, s) = 2exp —2a'+, + K' e ' exp — ', g(0)l'- g dY' ~dY'.
0

2m'a' 0 nz

The right-hand side of this equation is already in the form of a Laplace transform. Hence we get at
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once on inversion

R(K, I'=0, t) =2exp — 2~' +,+ K'exp — ', g(0)t- g dI"8 t2
2 Vo ~ 2h(K ~Y'

(15)

One can confirm that Eq. (15) fulfills the normal-
ization and the initial condition. We now choose
an explicit form for the function g(I'). For sim-
plicity we take it to be Gaussian, i.e.,

g(Q = [(2v) '~'u] -' e xp(-I"/2n') . (15)

!(3), with the proviso that the physical velocity
u be defined modulo some limiting velocity u„
say. This mathematically simulates the umklapp
process. For instance, we could redefine physi-
cal velocity u as

With this choice, R(K, & = 0, t) can be seen to be
analytic in K at K=O. Thus, from Eqs. (12) and

(15) we get for the mean square displacement

u = u, sin(2vu/u, ),
and calculate the mean square displacement,
with u as the physical velocity. We get

(x'(t))=(/t u, sin[2rrf f(t")dt"]dt'J'),

(18)

This is an exact result. It shows clearly that the
particle motion is nondiffusive on any time scale.
In fact, the above result is quite general and de-
pends only on the fact that g(Y) is an even function
of Y and is analytic in ~ at Y=O. The special
case g(I') -e " " which is not analytic at F = 0
calls for a somewhat more detailed evaluation by
quadrature. Thus, we confirm that the quantum
motion in a fluctuating continuum gives nondiffu-
sive motion. The result is essentially identical
to that for the classical motion in a fluctuating
medium as in Eqs. (3) and (4). In point of fact
one may choose V(x, t) =xf (t) such that the ran-
dom force obtained as the gradient of potential
V(x, t) is actually f(t) as in Eq. (3). One can
readily verify that the asymptotic time behavior
remains cubic as obtained above.

The fact that the exact quantum treatment on
the lattice gives diffusive behavior has, there-
fore, to do with the specific nature of the lattice
Hamiltonian H~. The question is how to under-
stand this difference. The point is that a one-
band lattice Hamiltonian has a momentum cutoff
inherent in it. This limiting momentum is re-
lated to the Bragg reflection at the Brillouin zone
boundary or, what is essentially the same, one
has the umklapp process. The lattice acts as an
infinite momentum sink and prevents indefinite
acceleration of the particle. More transparently,
as the particle quasimomentum increases to-
wards the limiting value, the group velocity de-
creases and even reverses sign. ' Since it is the
group velocity that leads to physical displace-
ment the above results are understandable.

In order to see more clearly how such a limit-
ing momentum can lead to diffusive motion, it is
very revealing to consider again the classical
motion in a fluctuating medium described by Eq.

(x'(t))-u, 'at as t -~, (20)

which is again diffusive. In deriving this we have
used the well-known result (exp[if, f(t')dt'] )
=exp[-(+')t]. It seems clear, therefore, that
the quantum treatment based on the lattice Ham-
iltonian is Per se not a quantum analog of the
Brownian motion. The diffusive behavior with

H~ results entirely from the momentum absorp-
tion by the lattice via Bragg reflections. The
latter is absent in the case of the continuum,
and hence the nondiffusive behavior.

Finally, we must clarify that for a quantum
particle in a ~eal fluctuating continuum we do
expect a diffusive behavior. Here the effect of
the interaction of the test particle with the dy-
namical degrees of freedom of the background
fluctuating medium, however, cannot be repre-
sented entirely by a stochastic potential V(x, t)
having a parametric time dependence. We must
necessarily incorporate the analog of a dissipa-
tive term as well. Such a decomposition, if at
all possible, will lead to the quantum Langevin
equation. This problem is still not completely
solved. ' We would also like to point out that the
one-band lattice Hamiltonian has no continuum
limit. As is well known, for the latter one has
to have an infinite-band lattice Hamiltonian.
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Exciton and Pair Recombination at Intimate Valence-Alternation Pairs in a-As&S3
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Optically detected magnetic resonance in a-As2S3 has shown that the emission consists
of a high-energy triplet exciton recombination overlapping a low-energy pair process.
The results are consistent with recombination at axial defects such as (D+, D ) intimate
valence-alternation pairs.

PACS numbers: 71.35.+z, 71.55.Jv, 76.70.Hb, 78.55.Ds

The observation of light-induced EPR signals
in a-As, S3 by Bishop, Strom, and Taylor" was
an important step forward to the understanding
of the defects which occur in this and related
materials since the measurements were consis-
tent with the Mott-Davis-Street model' which
postulated the existence of D' and D diamag-
netic centers in the dark. The EPR results
showed that if a hole is localized near a sulphur
atom, then a narrow EPR signal is observed,
whereas an electron localized at an arsenic atom
is characterized by a much broader resonance
due to the arsenic nuclear spin (I= &). These
signals were assigned to the isolated defects D'
and D capturing holes and electrons, respective-
ly, and it has been generally assumed that these
centers are the native defects in a-As, S,. More
recently Biegelsen and Street' reexamined the
photoinduced EPR in the light of measurements
by Mollot, Cernogora, and Benoit a la Guillaume'
on Ge„Se, „glasses and showed that spin densi-
ties of -10"cm ' can be induced by light in As,S,.
These new measurements suggested that there
are two sets of defects, the isolated "native" de-
fects and the photoinduced defects, which Biegel-
sen and Street' suggested were due to (D', D )
pairs that can capture either an electron or a
hole, inducing paramagnetism and midgap ab-
sorption. Luminescence in a-As, S3 was first
reported by Kolomiets, Mamontova, and Babaev'
and the generally accepted recombination model
proposed by Street' suggests that the lumines-
cence observed at -1.2 eV involves hole capture

at a D center followed by electron-hole recom-
bination involving a tail-state electron, i.e. (D',
e ) —D . However, recent time -resolved spec-
troscopy (TRS) measurements by Street, ' Bosch
and Shah, ' and Higashi and Kastner" are far
from agreement. The only consistent pattern
in these studies is that at longer delay times
there is a shift of the emission to lower energies.
In fact, Bosch and Shah' have observed two emis-
sion components, one at high energy, with short
lifetime, and a second longer-lived band at lower
energy. In analogy with recent TRS" and optical-
ly detected magnetic resonance" measurements
in amorphous phosphorus (a-P), this suggests
that the high-energy emission is excitonic, and
that the low-energy emission is a pair process
(contrary to a-P, where triplet exciton recom-
bination occurs at low energies). We have ex-
plored the link between the luminescence and the
identity of the defects by optically detected mag-
netic resonance, and report in this paper triplet
and pair optically detected magnetic resonance
signals which confirm that the luminescence in

As 2S3 is due to exc iton and pair rec omb ination,
where the high-energy region is principally exci-
ton emission. %e propose that the magnetic and
optical properties of a-As, S3 can be attributed to
(D", D ) pairs alone.

The photoluminescence (PL) at 2 K induced by
excitation above the band gap is a broad, feature-
less band centered at -1.2 eV, and we show a
typical PL spectrum, measured with a Ge de-
tector, in Fig. 1(a). The effect of exciting below

556 1982 The American Physical Society


