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essentially constant p~ despite marked changes in
MHD intensity. With P, reduced to 0.6 1VIW to
produce a P~ value out of saturation and a plasma
regime in which the independently unstable, high-
n, pressure-driven modes are less likely to be
important, the amplitude of the instability signals
again decreased markedly as &r was raised (Fig.
4). However, p~ did not increase; neither did the
stored energy (~P~I~') or the gross confinement
time (~PpI~'/P; „).

We conclude that the MHD activity observed in
ISX-B is well understood in terms of the resis-
tive MHD model and that this observed activity is
not responsible for pronounced degradation of con-
finement. The n & 1, pressure-driven modes-pre-
dicted by the model are a possible explanation for
the observed degradation, but their presence in
this plasma has not been experimentally verified.
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Density-Wave Theory of First-Order Freezing in Two Dimensions
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The spontaneous formation of a finite-amplitude density wave of hcp lattice symmetry
is discussed, folIowing the work of Ramakrishnan and Yussouff. The freezing parameters
do not depend on the interatomic force law, contain no adjustable parameters, and can
be improved perturbatively. The results agree very well with those from computer sim-
ulation for a wide range of systems.

PACS number: 64.70.Dv

There has been considerable recent interest
in the nature of the liquid-solid transition in two
dimensions, ' spurred by the development of a
beautiful and detailed dislocation unbinding the-
ory due to Halperin and Nelson' (and also Young' )
based on the ideas of Kosterlitz and Thouless. '
Many experiments and computer experiments
have been carried out' to test its novel pre-
dictions, e.g. , that there is a hexatic phase be-

tween the solid and the isotropic liquid, and that
the transitions are thermodynamically continuous.
Most recent computer simulations, e.g. , on the
Lennard-Jones system at constant pressure, '
and r " systems with n = 12,"n = 3,"and n = 1,"
show a first-order transition and no hexatic
phase. Freezing parameters such as the entropy
change (AS/k &)

' " and the structure factor peak
near freezing""" are close to 0.3 and 5.0, re-
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spectively, for widely different systems; two-
dimensional fluids freeze similarly though sud-
denly. It is possible that the true long-time
phase may not be sampled in simulation studies
if defect relaxation times are very long. It is
therefore significant that rare-gas monolayers
adsorbed on smooth substrates all show first-
order melting if sufficiently incommensurate
and have a triple point T, to within a few percent
of the Lennard-Jones computer simulation val-
ue. " In this Letter, I present new analytical
results and detailed calculations based on a the-
ory due to Ramakrishnan and Yussouff. ' '" This
theory considers the solid near melting as a cal-
culable perturbation on the liquid, and shows that
their free-energy difference is determined by
short-range correlations and geometrical (struc-
tural) factors. The calculated freezing param-
eters (see also Ref. 14) are close to those ob-
tained in computer experiments. I also make
a number of predictions which can be checked.

The mean-field transition is expected to be
first order from symmetry arguments; there
are cubic terms. The question of whether first-
order melting occurs below the dislocation un-
binding temperature, or the opposite, is not in-
vestigated here. Abraham" finds from careful

Monte Carlo simulation that the former is true.
I briefly comment on this question at the end.

Consider the spontaneous formation of a lattice
periodic density wave in the system, so that the
density is

p(r) = p, [1+q+5, Ac exp(iG r)],
where the G's are reciprocal-lattice vectors
(rlv's). This sets up a potential u(r) which is a
functional of the density, i.e.,

Pv(r) = J c(r —r')[p(r') —
p, ] dr'+ 0( 5p)'

= cor~+PG cc A~ exp(iG r) .
(2a)

(2b)

The functional derivative c(r -r') is the fluid
direct correlation function. The structure fac-
tor S„=(1-c~) '. The expression (2a) is useful
if higher-order terms are relatively small. We
discuss their effect later. For this classical
system, one has the Boltzmann relation p(r)
= p, exp[-Pu(r)], i.e. , a self-consistency condi-
tion for (q, A.cj,

[1+q+pcA~ exp(iG r)]

= exp[ c,q+QG cc A. c exp(iG r) ].
The thermodynamic potential change P(Q —0,)
=~ associated with this density change is given by

u = PJ v(r) p(r) d'r —
~ Jc(r —r '

) [p(r) —po] [ p(r ' ) —p~ J d'r d'r '

=(—1+co)71+2+ccc [Aci

(4a)

(4b)

where the first term in Eq. (4a} is the internal energy contribution and the second term is from density
fluctuations. On integrating Eq. (3) over r, we see that q is a function of (Ac], c„and (cG] so that
Eq. (4a) for cv depends only on the order parameters (A.c). The extremum conditions &&u/sAc=0 are
contained in the self-consistency relation Eq. (3).

The structure factor S, has a single narrow peak for fluids near freezing, in three and even more
prominently in two dimensions. Thus c"„is largest for a wave vector which we identify as the smallest
rlv 6, of the solid, since condensing into this wave-vector mode is energetically most favorable. To
begin with, we therefore ignore all other order-parameter modes. Further, in the regime of interest
the fluid phase is virtually incompressible, with -co = 50»1." So we consider initially the incom-
pressible limit, i.e., area change g-0, -c, -~, but c,g finite.

The free-energy balance and extremum equations simplify to

&u = -ln(A ' Jd'r exp[c,A,QG exp(iG, ~ r)]j '+n,c, ,'A (5a.)

= -ln+(cIAg) + g nIcgA. g (5b)

and

n, A, = y'(c, A,)/y(c, A,),
where c, =cc, A. , =AG, and the set (G,j has n, members. The first term in Eq. (5a} (the attractive
internal energy) is related to the incompressibility condition, i.e. ,

p(r) =exp[-in@(c,A,)]exp[ c,A+c, exp(iG, .r)] .
The free-energy balance is determined by two-body correlations (c,) and by geometrical crystal-struc-
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ture-dependent factors [i.e., Po exp(iG, r)]. The two equations (5) and (6) for the two unknowns c,
and X, can be solved for a given crystal structure, i.e. , a given set of vectors (6,). One thus obtains
the same freezing condition for all fluids, irrespective of their interatomic force law. '

In two dimensions there is no freezing into a square lattice. For a hexagonal lattice, there is a solu-
tion which we locate numerically. In Fig. 1, ~ is exhibited as a function of order parameter A.„ for
various values of c,. There is always a fluid solution. For c, =0.85, the fluid is more stable and at
c,=0.86, the hexagonal solid is more stable than the fluid. The transition is definitely first order; at
the freezing point (c»=0.856) the order parameter A. , jumps from zero to A»=0. 51. The scale of free-
energy differences involved is, however, rather small, -10 k~T per unit cell. The density distribu-
tion in a unit is completely determined:

p(x, p) = (1.01/3~3a') exp[ 0.45(2 cos 2v +4 cosu cosv) ],
where u=2vx/a and v=2~/v Sa, the lattice vec-
tors being a(+1, 0), (a/2)(+1, +v 3). For small
compressibility S, the fractional area change is

1)=Sc,z,2(1-c,) '=0.7S, . (8)

The corrections to be discussed below increase
the constant of proportionality by about 20%.
The entropy loss on freezing is given by"

~S = [ 8(n - n, )/8 T]„=Sa, Z, '7 (Bc,/8T) „. (9)

The derivative (8c,/8T) „ is not known. However,
in the spirit of this theory it can be estimated
from the solid side. In the one-phonon, high-T
limit, S, ~ (k 2 T/M) [+1(e,1 q) '/c1, 1,'] . Assuming
&co,1,/8T=0, we find

! computation that Eq. (11) is accurate to within
15/~ for S, &0.05, c, &0.40, and ci2~ &0.15. Since
S, is typically 0.02, (A2&/A»)2 = 0.075 [as calcu-
lated using Eq. (7)], and c,-0.33 (Ref. 7) the
first two corrections are indeed small. Nothing
is known about c~'~. We will assume it to be
zero. Similar perturbative estimates for the
change in j„A.„and LS can be obtained.

0.6—

0.5—

aS/u, = (n, /2)Z, '(1 —c,) . (10) 0.4—

This is equal to 0.12 in two dimensions, a gross
underestimate since S, ~co, ' and there is con-
siderable phonon softening near T ." This is
not true in three dimensions, and the result Eq.
(10) (giving &S=0.90ks for all bcc crystals, in
very good agreement with experiment) resolves
the long-standing puzzle of the size and constancy
of melting entropy in simple substances.

We now calculate corrections to the above re-
sults. This can be done perturbatively, by ex-
panding the free-energy co around the minimum

(c», A. ») and retaining only the leading terms.
We find, for example, that

3
5cI 2 clf SO (~2//~lf ) c2 2 ~1fc

y

where the first term is the correction due to
finite small compressibility S, and the second
arises from the order parameter A., correspond-
ing to a density wave of wave vector 6,=26, (c,
has a second smaller peak c, at ! q! =!6, ! ).
Other modes n couple less well to the dominant
mode X„and have smaller c„. The third term
is from correlations (c" ) between three density
fluctuations, which are zero-sum members of
the set (6,). I have checked by direct numerical
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FIG. 1. The free-energy difference between liquid
and solid in units of &~T plotted as a function of the or-
der parameter (lattice periodic component of the den-
sity). There is a solidiike minimum for c1= 0.85,
though the liquid has lower free energy. The solid is
more stable for c, = 0.86 and much more so for c&
= 0.90.

543



VOLUME 48, NUMBER S PHYSICAL REVIEW LETTERS 22 PEBRUARY 1982

TABLE I. Freezing parameters for hcp solid in bvo dimensions.

Structure factors
Ci S(

Fractional
density change

n

Entropy
charge
(as/k, )

Lattice
periodic
density

A f

One-order-parameter
theory

With perturbative
corrections

Computer experiment

0.856

0.826

0.81

6.94

5.25

0.013

0.015

0.020

0.29

0.32

0.33

0.51

0.54

I now compare the present results with those
from computer simulation. For concreteness,
we compare with the work of Broughton, Gilmer,
and Weeks' on ~ " systems. Their results for
c, , q, and (~S/k B) are given in the third row of
Table I. The calculated values in the one-order-
parameter theory are given in the first row. To
obtain the fractional density change, we use S,
=0.0185.' For the entropy change, we need (&c, /
BT)„. In Ref. 7 c; is obtained at T = I for two
densities p close to freezing. Using this and the
fact that p, is a function of pT', we find that
T(ec, /&T)„=0.35. This estimate could be wrong
by 20% since it involves the difference of two
nearly equal quantities. The theoretical numbers
are in reasonable agreement with computer ex-
periment, but correspond to a noticeably weaker
first-order transition. Perturbative corrections
due to the order-parameter mode A. G, =A.,G, , with
use of Eq. (Il) for 5c, and similar equations for
other freezing parameters, and with S,=0.0185
and c, = 0.33,' clearly improve the agreement
which is now quite good (as shown in the second
row of Table I). We have assumed ci'i=0. A
positive c ' and other nonzero Fourier compo-
nents c„will stabilize the crystalline solid some-
wha. t more.

I have presented here a mean-field theory. In
two dimensions fluctuations (sound waves) lead
to a (logarithmically) slow loss of positional cor-
relations in the crystal. ' " It was assumed that
the free-energy balance, determined by short-
range correlations and geometrical factors, is
not very much affected, so that while a complete
theory would have (p, ) diverging as a power law
around G's, rather than having a ~-function
singularity, the freezing parameters may be
nearly the same. In the dislocation melting
model, the unbinding of distant dislocation pairs,
contributing exponentially little to free energy,
leads to sudden vanishing of the shear modulus.

Two scenarios are possible. One" is that first-
order melting preempts the continuous disloca-
tion transition (which is the absolute stability
limit of the solid), i.e., Tz (T,. The second is
that Tz )T„so that melting is by dislocation un-
binding, but defect relaxation times for T„&T
&T& are so long that the system is preceived as
a solid in computer experiments. One experi-
mental way of distinguishing between these is to
examine spatial correlations in systems where
Tf is clearly identified, say from pressure iso-
therms (e.g. , near monolayer Xe on graphite).
If correlations are exponential for T & T& but
power law for T(Tz the first possibility is indi-
cated, while power-law correlations, on either
side support the second.
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couragement and for discussions. I am thankful
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P. D. Vashishta for communicating their results,
and to J. R. Banavar for reading the manuscript.
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Observation of Rotational Transitions for H2, D2, and HD Adsorbed on Cn(100)
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Energy losses observed when low-energy electrons were scattered from a Cu(100) sur-
face exposed at T - 15 K to H, (and D2, HD) lie close to rotational and rotational-vibra-
tional transitions (H~, D~) of the free molecules. Both o- and p-H& and -D, physisorb
on the surface, with negligible conversion on the time scale of the experiment. The rel-
ative populations were different from those characteristic of the adsorbing gas, suggest-
ing a j-dependent sticking coefficient.

PACS numbers: 68.45.-v, 33.20.Ea, 68.30.+z

In recent years, electron energy-loss spectros-
copy (ELS) has emerged as a powerful probe of
the vibrational excitations of adsorbed molecules,
thus providing a most important source of new in-
formation about them. From measured vibration-
al frequencies ii is relatively straightforward to
draw conclusions about, e.g. , molecular or dis-
sociative adsorption and possible adsorption
geometries. In this Letter we demonstrate that
rotational and combined rotational-vibrational
transitions of H, and D, adsorbed weakly on the
well-characterized Cu(100) surface can be re-
solved, ' and give information about the adsorp-
tion state previously inaccessible to any tech-
nique.

The system chosen is particularly suited to a
study of rotational excitations. There is strong
evidence that the ground state of H, on Cu(100)
corresponds to atomic chemisorption and that the
dissociation is activated. ' The activation barrier
might separate physisorption and chemisorption

regions. Alternatively, it may cause H, to be
trapped in a molecular "precursor" of the type
recently proposed for the Mg(0001) surface 'The.
two types of adsorption give rise to similar vibra-
tion frequencies but completely different rotation-
al spectra. For weak physisorption, one expects
transitions of a perturbed three-dimensional
rotator, while the molecular precursor would
show the spectrum of a strongly hindered, or
even confined rotator. Examples of each type
have been seen in neutron scattering, for H, on
Grafoil' and on activated alumina, ' respectively.

In the neutron scattering experiments no at-
tempt was made to adsorb rotationally excited
molecules (o-H„p-D, ), or to measure relative
populations and conversion rates. These quanti-
ties are of importance because the mechanism
of ortho-para conversion at surfaces is still not
understood in detail. They can be estimated di-
rectly from the ELS intensities once the relative
cross sections for the j =0- 2 and j =1-3 transi-
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