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In Heisenberg spin-glasses, the orientation of a state is specified by a reference spin
triad {n,p, q), and its anisotropy is specified by a rotation g of this state away from its
equilibrium orientation. Rotation of (n, p, q) by —p defines an anisotropy triad (N, P, Q),
whose dynamics is derived. This dynamics is exclusively dissipative, consistent with
torque and ESR measurements. Analogy to ordinary glasses suggests a Vogel-Fulcher
law for the associated relaxation time.

PACS numbers: 75.30.Qw, 75.50.Kj, 76.90.+d

A valuable picture of the spin-glass (SG) state
has emerged from the numerical simulations of
Walker and Walstedt for a prototype SG, CuMn. '
These authors randomly substitute Mn atoms for
Cu, and study the local energy minima for a
Ruderman-Kittel-Kasuya- Yosida (RKKY) coup-
ling. They find that, in each local minimum, the
Mn spins point in all three spin directions, in a
fashion that overall would appear random to the
eye. Individual spin orientations are thus speci-
fied with respect to an orthonormal triad, which
I call the spin triad (n, p, q).' The orientation of
the state as a whole is given by specifying (n,p,
q), where n is taken along the remanent magneti-
zation m„' the orientation of p and q (about n),
however, cannot be associated with any macro-
scopic observable.

Because the anisotropy energy of real SG's is
found to be independent of the magnitude ppfp

—= Impl, SG anisotropy has been somewhat puz-
zling. " Indeed, Schultz et al. ,

' who successful-
ly interpreted a large part of their ESR data in
terms of a uniaxial anisotropy involving n N,

comment that "N' is a fixed (in space) direction
whose origin remains a mystery to us." Even
more mysterious is the fact that torque experi-
ments show, under certain circumstances, that
the anisotropy axis N is not fixed, but rotates
with respect to the crystal. "

If anisotropy in SG's were specified only by ro-
tations about axes which are normal to N, it
would be the purpose of this paper to derive the
dynamics of X. However, the microscopic calcu-
lations of Fert, Levy, and Morgan-Pond' have
shown that an anisotropy torque develops on ro-
tating an equilibrium SG state about any axis (.
This torque is along P, and its magnitude (as well
as the anisotropy energy) depends only on the
magnitude g of the rotation angle. g—= gg gives
the relative orientation between the apparent lat-
tice orientation (as given by the density matrix
which specifies the state) and the actual lattice
orientation (as given by the Hamiltonian). Al-
though it is sufficient to specify the anisotropy
by ttI, as in Ref. 7, for the present purposes it is
more convenient to work with (n, p, q) and a gen-
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eralization of the anisotropy axis, which I call
the anisotropy triad (N, P, Q). Given (n,p, q)
and g, one obtains (N, P, Q) on rotating (n, p, q)
by —g. Thus, in equilibrium, where there is no

anisotropy torque, (n, p, q) coincides with (N, P,
Q). [To obtain g from (n, p, q) and (N, P, Q), one
employs the rotation matrix taking (N, P, Q) to
(n,p, q):

R„8=n~N8 +p~P8 +q„Q8.

The relation e 8 R &
= 2tty sin( then gives g and

il
It is thus the purpose of this paper to derive the

macroscopic dynamics (or hydrodynamics') of
the anisotropy triad (N, P, Q). I find its behavior
to be exclusively dissipative, and discuss some
implications of the theory for torque'' and ESR~'
experiments, which already show such dissipa-
tive behavior. Finally, I suggest an analogy be-
tween the anisotropy of SG's and the shear rigid-
ity of ordinary glasses.

Of the large number of spin degrees of freedom
in a SG, at a macroscopic level we consider only
the magnetization mand the triads fu ' }=- (n, p, q)
and (v('))=—(N, P, Q). In terms of these and the
entropy density 8, the differential of the energy
density e is taken to be

d~=TdS+g„-H„)dm +X &* du)„~' +)r„,dR, .
(2)

We take h~ = y '(m~ -m, n„), so that m =m, n+ yH
in equilibrium can account for the remanent and
induced parts of the magnetization. The require-

ment of rotational invariance [i.e. , de =0 under
uniform rotations of m, (n,p, q), and (N, P, Q)]
then gives x„~') = —(m,/y)m, y

' =y '"=0. The
last term of Eq. (2) we obtain after introducing
the infinitesimal relative-rotation vector dg„
—= d8& -R&,de„, where d8„rotates (n, p, q) and

de, rotates (N, P, Q). Then dR~&=e „,d(„R»,
and so

I'„= —(K, sing+ —,K, sin2$)g„, (4)

which can be understood from theoretical consid-
erations. " "

To obtain the dynamical behavior, the follow-
ing equations of motion are assumed:

@+~ij' 0& ~+~i ji =R) 0

m„= —y 8m/88 +J'„, (5)

e e

where j,', ji, R, J, & =—8, 0„=8 are un-
known (y is the gyromagnetic ratio). In comput-
ing Be/88 we must rotate m and (n, p, q), but
not (N, P, Q), so that

-y 8c/88 =y(mx H) +yr . (6)

With R&„r„=r„[since I' is along g, by Eq. (4)],
and I"=—I' —(m, /y)mxn, Eqs. (2)-(6) yield

r.,dR, = r—„dq„, r„=- —~„,.R„r„,. (8)

The experiments of Gullikson, Schultz, and Fred-
kin, "when extended to triad anisotropy, indicate
that the anisotropy torque is

0( TR =-8;(j —Tj; ) —j; 8,T —J @~-H )+ [m —y(h —H)] ~ I"—Q I'.

(./T)8, T, -.
J„=-yD(a. -H„),
(d„—y(h~ -H„)=yE1 '+yEIr„,
~ =-year. -yE r. .

(8)

This involves, as expected, a pure divergence
term and the product of unknown thermodynamic
fluxes (e.g. , j,s) with known thermodynamic forc-
es (e.g. , 8,. T). Thus h —H is the "force" asso-
ciated with m, 1 is associated with (n,p, q), and
I' is associated with (N, P, Q). In equilibrium,
when these "forces" are all zero, m, n, lV, and
H are all parallel, and (n,p, q) coincides with
(N, P, Q). By writing the fluxes as linear combin-
ations of the "forces," and employing the Onsager
symmetry principle, we find that

1Here we neglect a possible m& 1"' term in J
and its associated mx (h —H) term in &u„, as well

as other related terms (m, nx I", etc.). To be
consistent with R) 0, we must make the (dissipa-
tive) transport coefficients satisfy ~,D,E,E, (EF

)& 0
Observe that for J, 1, and m, all zero (as

assumed in Ref. 14), the first four of Eqs. (8)
agree with Ref. 14. It is the last of Eqs. (8)
which contains the (new) dynamics of the anisot-
ropy triad (N, P, Q), via Eq. (5).

We immediately note that the dynamics of
(N, P, Q) is exclusively dissipative, since in Eq.
(8) the individual terms in 0 are even under time
reversal T, and hence v ' and O&&v ' behave dif-
ferently under T. [The neglected mx (h —H) and
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m, nx (h —H) terms are also dissipative. ] This is
consistent with the zero-field-cooled (Z FC)
torque measurements of Ref. 6. These authors
apply a field H to the ZFC sample, and then slow-
ly rotate H about a perpendicular axis &p. They
find that the torque initially builds up, but that
eventually it saturates, even though H continues
to rotate about e. p This indicates that H has
brought (n, p, q) into rotation, and (n, p, q) has
brought (N, P, Q) into rotation, but that there de-
velops a constant phase lag. In addition, in the
torque measurements of Ref. 5, when data points
were retaken, with H held fixed for an additional
time interval, the torque was found to have de-
creased. " This I interpret to indicate that the
phase lag has relaxed. A third example of this
sort arises in the angle dependence of the ESR
resonance field H„observed in Ref. 4. There it
is found that ZFC samples show no dependence
on the angle between H„and the cooling field H,
(FI, & 1 G), although there is a marked dependence
for samples cooled in kilogauss fields. I take
this to indicate that (N, P, Q) relaxes more quick-
ly in ZFC samples than in non-ZFC samples. We
now turn to a. brief analysis of these phenomena,
using Eqs. (4)-(6) and (8).

The ZFC torque experiments correspond to a
steady-state solution with m =ap& m, & =~ and
0 =~, , where ~ p is the rotation rate of the field
H. Such a solution holds so long as wp is suffi-
ciently small that we may linearize the m equa-
tion with m~ (~0+yH)H. Using n=H+6n, 5h-=h
-H, and F as variables, one can show that I H
= Bh H =0. (This holds even including the mx F'
and related terms )Thus .there are six quantities
(tIx6g, Hxph, HxI') to be solved for. In general,
one expects F +~p+B p 0 However the equations
simplify considerably if we take E'=0. Then (8)
gives I = —(yIi) '0, and so if 0 is along +„ the
torque I lies along the rotation axis zp. As a
consequence, if n and K initially are normal to
&u„ they will always be normal to a„and Eq. (4)
then gives I'= —(K, +K,)(9„—9„)&~„where 8„and
H„are measured about the ~~p axis and 8„—8~ is
taken to be small. Since H~=Q ~ ~p here, there is
a characteristic relaxation rate 7. ' determined
by

9„=-~ '(8 —8„), ~ '= yz(K, +K-,) (9.)

(This is true for any 0 always along c „and 9„
—8„small. ) Because both the rotation rate wo
and the torque F are needed to extract yE (=+,/
I' here), and &e, is not given along with the meas-
ured values of I, it is not possible from the liter-

=m, H sin(9„- 8„). (10)

The adjustment of 0„ to the motion of H„and I9„
is obtained from (10) and the finite 9„—8„ver-
sion of (9): with (10), it is

69& =yEm, H f ' sin(8„- 8„)dt.

9„, in turn, adjusts to 68~, via (10). By varying
both 8„and 8„ in Eq. (10), I obtain

58„=K[K m+, H cos(8„—8„)] '68„,
(12)

K=K, c os {8„—9„)+K, cos2{8„—8„).
As a consequence, the torque F has, in addition
to its value for 8„ frozen [given by the negative
of either the left- or right-hand side of Eq. (10)],
an additional contribution

&F = —v~0K(58„—68„). (13)

This expression can be applied either to the case
of a. consta, nt, ra.pid rotation of H about &p or
the case of a rapid rotation of H about &~p to a
new fixed value. In the first case one sets 8„
= 8„=0 as initial conditions (so 9„=0 initially),
then solves Eq. (10) for 8„with 8„=~,t, and then
employs (11)-(13) to obtain 69+(t), 68„(t), and

6F(t). In the second case one sets 9„=0 and 8„
=8, as initial conditions [with 8„determined by
(10)], and then (11)-(13)are used to obtain the
time development.

One more case is of interest: that where both
O„and O„are small and vary as e ' ', such as
occurs in transverse ac susceptibility measure-
ments, 'b or ESR measurements with H along
H, + ' [for H not along H„ the motion is more
complicated than simple rotation about a single
axis normal to H (Ref. 12)]. In this case, Eq. (9)
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ature to determine cha, racteristic values for yI,
and thus T. However, from the previously men-
tioned contrasting beha, vior of Z FC and non- Z FC
samples, it is clea, r that YzFc non-zFc so
that ~ is a sensitive function of H, .

One can also study, for E'=0, the situation
where H changes on a time scale slow enough for
m and (~p, q) to be in local equilibrium [so h= H

and I'= (~, /y)mx n], but too fast for (N, P, Q) to
be in local equilibrium (so Fwt)). This corre-
sponds to the non-ZFC situation. 'b "We will
restrict ourselves to rotation (perhaps not con-
stant) only about &„so that the system may be
described solely in terms of angles about z~p. For
a given H and N, the local equilibrium solution
for 8„ is obtained from I' ~ w, = (~,/y)mx n ~ m, :

K, sin(8„—8~) + —,K, sin2(8„—9„)
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implies that ()„= 9„(1—ice~) ', so that the ZFC torque measurements.

r ~ ~, = —(K, +K,)(1+z/( ~) '8„—= -K((u)g„. (14)

This provides a frequency-dependent anisotropy
constant, with characteristic time ~.

Note that both ordinary glasses and fluids have
a shear modulus with a, frequency dependence
well represented by the form (1+i/~7) ', as in

Eq. (14). For fluids ~ has no sharp T dependence,
whereas for ordinary glasses as one approaches
the temperature T,~ from above, one finds the
Vogel- Fulcher law, v ~ exp[A/(T —T~*)]. Thol-
ence has discussed, from an experimental view-
point, the applicability of this "law" to the time
dependence of yg, ." For nondilute BKKY SG's it
seems to hold, whereas for dilute RKKY SG's
and for insulating SG's, an Arrhenius law [~
o. exp(B/T), with a wide range of activation ener-
gies B (Ref. 17)] seems to hold. The question of
Vogel- Fulcher versus Arrhenius behavior is
clearly relevant to the relaxation of the anisot-
ropy triad. Analogy to the shear response of or-
dinary glasses suggests Vogel- Fulcher behavior
but this remains to be seen. (Note that Vogel-
Fulcher behavior probably would indicate a more
collective effect than would Arrhenius behavior. )

To summarize, I have constructed a phenom-
enological theory of spin-glasses which permits
the anisotropy triad to move. Consistent with ex-
periment, this motion is found to be purely dis-
sipative. Detailed confirmation of the structure
of the theory would permit quantitative evaluation
of the associated relaxation time (as a function,
e.g. , of H„T, H, and spin concentration), and
suggest mechanisms responsible for this relaxa-
tion.
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