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processes share the advantages of other optical
techniques for surface study. Yet unlike optical
methods, these processes can exhibit the high de-
gree of intrinsic surface sensitivity characteris-
tic of the techniques relying on the absorption,
emission, or scattering of electrons and other
massive particles.
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The stability of one-dimensional, solitary vortex structures in the electron phase space
(electron holes) is investigated. A linear eigenvalue problem is derived in the fluid limit
and solved exactly, assuming that the normal mode is well represented by the lowest
eigenstate of a properly chosen field operator. A new dispersion relation is obtained
which exhibits purely growing solutions in two dimensions but only marginally stable so-
lutions in one dimension. This explains the numerically well-known fact that vortex
structures disappear in going from one to two dimensions.

PACS numbers: 52.35.Py, 52.35.Fp, 52.35.Mw, 52.55.Dy

Phase-space vortices, best known from par-
ticle simulations, ' are saturated trapped-par-
ticle states of beam- or wave-driven plasmas.
Only recently they have been observed experi-
mentally' and described analytically. ' The analy-
tic solution in terms of a specially tailored
Bernstein-Greene-Kruskal (BGK) wave shows a
characteristic positive potential hump in which
a finite number of electrons is trapped. For its
existence there has to be a deficit of deeply
trapped particles in accordance with the ring-
shaped pattern of a vortex structure in phase
space. Its characteristic speed is of the order

of the electron thermal velocity or less. Being
thus an entirely kinetic phenomenon, little in-
formation is available about its stability behavior.
Stability theories' presented up to now deal with
idealized periodic BGK equilibria.

This paper is devoted to the stability of a
solitary, localized one whose physical existence
has been proven experimentally. Guided by the
general framework of Lewis and Symon, ' I first
derive an eigenvalue problem for two-dimensional
perturbations adapted to localized BGK waves
and then solve it under two assumptions.

An equilibrium phase-space vortex is described'
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in the weak-amplitude limit by an electric poten-
tial given by y, (x) =g, sech'(ax), where y, is the
normalized amplitude and o. -g, 'i', the propor-
tionality constant depending on a parameter
which reflects the state of trapped electrons. In
the wave frame, the corresponding electron dis-
tribution function f,(x, v„) is a generalization of
a shifted Maxwellian for untrapped particles and
a Maxwellian with a negative "temperature" for
trapped particles. The generalization consists of
replacing the particle velocity v„by o(2E „)'~',
where v=sgnv„, and E

~,
=v„'/2 —y, (x) is the nor-

malized single-particle energy in the x direction.
In the laboratory frame the speed is given by v0
=1.3(1 —16o.') which is normalized by the elec-
tron thermal speed. The electric potential ener-
gy, the coordinates, and the time are normalized
by the electron thermal energy, the Debye length,
and the inverse plasma frequency, respectively.

Two-dimensional perturbations to this equilib-
rium are governed by the Vlasov-Poisson sys-
tem, assuming a fixed ion neutralizing back-
ground. After Fourier transformation in t and y
the linearized system becomes

( i~+L)f, = -(B~ EQL+ikv, &~ E,)y, ,

(s„2-k )y, = J d vf, ,

A= 8„'—k2+ fd v Bz E, = 8, -k -n, '(p, ), (2)

where n, is the unperturbed electron density,
and a new perturbed distribution function

g =~i+ @is~„E

the system (1) transforms to

( xQ) +L)g= 'L((ds@ +kv s@ )Eopg

Ay, = jd'vg. (5)

Equation (4) is solved by the method of charac-
teristics to give

where f, and y, are the Fourier transforms of the
perturbed electron distribution and the electric
potential, respectively, k is the perpendicular
wave number, and the background distribution
reads in two dimensions E, =f,(x, v„)(2~) ~'
x exp(-E ~), with E~ = v, '/2 the unperturbed par-
ticle energy in the perpendicular direction.
=v„a, +y, (x) &„ is the equilibrium I iouville
operator, and ~=~ -k~, is the Doppler-shifted
frequency. By introducing both a new field opera-
tor'

g =-i(~a~ +kv, 8~ )E,exp[is"T~, (x, o)j dx', ~ ' q,(x', k, ~),, exp[-i&DT~(x', o) J
ll

(6)

where v(x, E
~~, o) = o(2[E,

~

+ y, (x)]]' ' is the parallel particle velocity expressed in terms of E
~,

and o."
In (6) Ts(x, o) —= J dx'/v(x', E „, a) is the time a particle takes to move from zero to x on an unperturbed

0
orbit characterized by the constants of motion. Assuming that the perturbation is switched adiabatical-
ly, we get after repeated partial integrations

g=[ B~ +(kv, /u)) &~ ]E,(1 —(i/(u)v„s„[1 —(i/u))v„&„(1 —~ ~ ~ )]) (p,(x, k, (u). (7)

Later on, in the so-called fluid limit, I cut this geometrical series assuming that the series is well
represented by the leading terms.

y„on the other hand, is expanded with respect to the eigenfunctions g of the field operator A which

are given by

(8)

For the solitary vortex structures (8) turns out to be a solvable Schrodinger problem with a sech' po-
tential. A possesses five discrete eigenstates besides the continuous spectrum, the lowest-energy state
being given by

r],(x) = sech'nx, Z, = -9o.'+k'. (9)

Assuming now that the normal mode is well described by (9), i.e. , y, (x, k, ~) -q, (x), we get after inser-
tion of (7) into (5), multiplication of (5) by 7l,(x), and integration over x an eigenvalue equation of the
following kind:

A.0C0 + dxq, (x)
ke, so„~ 1

Il 4) i („(d' x x 0
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where c, = f dx sech"(nx) =256/315o. . In (10) I have assumed that fourth- and higher-order terms
are negligible which holds if o.'(

~
~ j

'+k') ' «1, noting that terms involving an odd number of deriva-
tives vanish. This inequality relation will be checked a Posteriori. Evaluating (10), we get

k' —avo'+k'(a +k2) = gZ(g) [ —,'a(l +3vo2) —k' —g'(1+ vo' )a] —f'(1+vo')a,
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FIG. 1. The growth rate as a function of wave number
for different values of the vortex parameter a.

where f=~/&2 k, Z(f) is the plasma dispersion
function, and the vortex is represented by the pa-
rameter a = ~» n'.

Equation (11) is a new dispersion relation de-
rived for linear modes in an inhomogeneous
plasma characterized by the presence of a vor-
tex structure in phase space. It includes, of
course, the homogeneous dispersion relation
1 —(1/2k')Z'(g) = 0 which comes out in the limit
a —0 or k —~. It possesses, in addition, two
new branches, a marginally stable branch given
by ~2=1+3(2+vo')ak2/(a+k)', k'«1, which sur-
vives in the one-dimensional limit (k -0), and
an aperiodic branch (Re~ =0). The unstable part
of the latter is depicted in Fig. 1 in which y=Im(v
is plotted as a function of k for three values of
the vortex parameter a. This branch represents
purely growing modes for k &k„~k =—a~'v, and

purely damped modes for k&k . The dependence
of the scaled quantities on the parameter a is
weak. Maximum growth rate is attained at k

~k~/2 with y,„~k„/2- a - g, '~'. It scales,
therefore, with the inverse width of the inhomo-
geneity which means that the growth rate increas-
es with an increasing nonlinearity. The same is
true for k,„ indicating among others that the re-
sults are not available by a WKB analysis. The
figure also shows that y, and with it the branch,
disappears in the one-dimensional limit, k -0.
Hence, electron phase-space vortices are stable
in one dimension but unstable in two and three
dimensions.

With regard to the validity of the present ap-
proach it should be said that the cutoff in the

geometric series in (10) is satisfied only margi-
nally for the most unstable mode in view of a'/
(),„'+k,„')=0.5. In any case, the fluid ap-
proach seems to be better justified than the
kinetic limit where the opposite inequality rela-
tion is assumed. The validity and range of the
second assumption, namely the representation
of y, by g, alone, can be checked by the inclusion
of more than one eigenfunction of A in y„which
is an interesting extension of the present work
and in progress.

I close with the remark that these results ex-
plain for the first time analytically a well-known

property of vortices, namely, the major qualita-
tive differences which exist between one and two
dimensions and are seen in numerical simula-
tions, ' where it was found that the persistence of
vortex structures is lost in going from one to two

(or three) dimensions.
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