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Analytic studies of the Yvon-Born-Green equation have suggested that it may show no

true critical region for spatial dimension d &4 but that for d & 4 there is a critical point
of the mean-field type. Presented here are the results of numerical solution of the equa-
tion which strongly support these suggestions. Thus the Yvon-Born-Green equation ex-
hibits the correct borderline dimensionality of four and the expected mean-field behavior
for d 4, but for d & 4 has only a region of long, but finite, ranged correlations.

PACS numbers: 05.70.Jk, 05.20.Dd

The critical behavior of the Yvon-Born-Green
(YBG) integral equation, in the theory of fluids,
has been the subject of a number of recent inves-
tigations. ' ' Interest was attracted to this prob-
lem by numerical studies' of the spatial dimen-
sion d =3, square-well, YBG equation which ap-
peared to have a region of long-ranged solutions
characterized by values of the critical exponents
y', 0, &, and o' very close to those believed to be
correct. This suggests that the YBG equation
might provide an asymptotically correct descrip-
tion of the critical region of fluids. This perspec-
tive was changed by the publication of analytic
studies" in which the full YBG integral equation
was reduced, in the region of long-ranged solu-
tions, to a nonlinear differential equation by use
of a moment expansion. In particular, it was
shown' that, for d- 4, if the inverse correlation
length ~ were to become zero then the pair corre-
lation must necessarily be negative (in disagree-
ment with the numerical studies') at intermediate
and long range, with the critical exponent q (in-

correctly) given by q = 4 —d, whereas for d & 4, ~

=0 is compatible with a positive pair correlation
with q =0. Further analysis' has led to the pre-
diction that the correlations have the Ornstein-
Zernike form in the critical region for 2 & 4 but
that for d - 4, the isothermal compressibility K~
must remain bounded unless the correlations be-
come negative. The analytic work' ' is not, as
yet, capable of predicting either the numerical
values of the exponents P, y, and &, or their de-
pendence on spatial dimension d. Hence a full
understanding of the critical behavior of the YBG
equation, and its dependence on spatial dimen-
sionality, must rely on a combination of analytic
results and careful numerical solutions. We be-
lieve that the analytic studies and the improved
and more extensive numerical results we present
here (and elsewhere') strongly support the fol-
lowing conclusions: (1) For d -4, the YBG equa-
tion has solutions for which ~ is small but never
zero, attaining, for 2 =3, a minimum value of
about 0.08o '

(o is the hard-core radius). ln this
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region the thermodynamic behavior is approxi-
mately characterized by algebraic singularities
with realistic exponent values; however, no true
critical point (z =0) is present. (2) For d & 4 a
true critical point occurs, and in its vicinity the
correlations have, as predicted, ' the Ornstein-
Zernike form. In addition, the exponents y, P, ,
and 6 have the classical mean-field values and
the compressibility Kr is a homogeneous function
of the appropriate thermodynamic variables.

Thus it appears that, as a theory of critical
phenomena, the YBG equation exhibits the cor-
rect upper borderline dimensionality2 of d =4 and
largely the correct mean-field-like behavior for
d + 4, but that for d & 4 it shows a, perhaps inter-
esting, approximate critical region which never-
theless ultimately fails to develop into a correct
description.

The YBG equation in spatial dimension d can be
written as

""du(s)
Qs

g(s) (s" 't) cos8 sin' '8 fg(t) —1] dt ds,

where g(r) is the pair correlation function, u (r)
= p(r)/k BT is the reduced intermolecular poten-
tial, A. =p(d —1)&'" '~"/I'(d +1/2), p is the molecu-
lar number density, "' and cos8 = (r'+s' —t')/2rs.
Our numerical method for solving (1) is, briefly,
to replace the upper limit of the s integration by
a large but finite value (100o), set g(r) =1 for v
& 100o, discretize the continuous variables, and
compute the right-hand side of (1) by trapezoidal-
rule integration, with use of some initial choice
for g(r) We.then integrate (1) numerically from
& to 1000 and exponentiate to obtain from the left-
hand side of (1) the iterated values of g(r), which
are used as input for the next iteration. The suc-
cessive iterations empirically converge geometri-
cally, at least for well chosen initial g(r), and
the iterative process is continued until certain
convergence criteria are satisfied. Our calcula-
tions have been done by using a hard-core, at-
tractive square-well intermolecular potential' of
hard-core radius unity and well radius 1.85. We
give our results in terms of a reduced inverse
temperature 8 =&/k BT, where e is the well depth,
and the reduced density parameter A. . With the
above procedure we construct numerical solutions
for g(v) for various points in the (8, X) plane, us-
ing the converged solutions at one point as the in-
put for the iterative process at a neighboring
point, in a, search for values of (8,A) for which
g(r) becomes long ranged and the compressibility
Kr [i.e., the integral of g(v)] becomes large. Now

if the YBG equation exhibits critical behavior we
expect'2 to find a curve in the (8,a) plane (the
stability line) such that as we approach any point
on that curve the inverse correlation range &

tends to 0. We can determine K from the decay
of g(r) at large r but the analytic studies' also
provide an expression for ~ which depends only
on values of g(r) inside the potential range. The
~ values determined in these two ways, from the
numerical solutions, agree to about 1%% and this
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comparison provides an internal check on the nu-
merical method.

The major difficulty in determining the stability
line is that the convergence rate of the interative
process becomes very slow as ~- 0. A quantity
X„computed by a convergent first-order iterative
process will usually approach its limit X geo-
metrically for large n, i.e. , as ~X„-X~ ~AC"
where 0&C&1. If C is close to 1 the process
converges very slowly. Our iterative procedures
follow, quite accurately for large n, the above
geometric pattern but for solutions with w near
zero, C is very near 1 so that the process is slow-
ly convergent. It appears empirically, and there
is some theoretical reason to believe, that C =1
at, or very close to, the stability line. Because
of this solutions with ~ very small are very time
consuming to construct and the stability line must
be found by careful extrapolation to ~ =0.

We have now a large set of solutions for d =3
and d = 6, and some solutions for 4 = 5, in the
small-v regions of their (8, a) planes. Although
the d =3 case will be described in some detail
elsewhere, ' it is useful here to contrast the d =3
and the d =6 results. We locate the line of stabil-
ity by fixing X and looking at the 0 dependence of

If we do this for the4=3 case, say at A. =4.60
which was previously' thought to be the critical
isochore, we find that the & values determined in
the range 0.368 ~ 8 & 0.372 appear to extrapolate
to zero at 0, = 0.374; this led Green et al.' to de-
termine, for example, the exponent y by using
solutions in the above range of ~. We have since
constructed five numerical solutions for larger
values of 9, in the range 3.72&6) ~3.85 and find
that the previous extrapolation of ~ -0 is not fol-
lowed but that ~ in fact passes through a minimum
of about 0.08 near I9 = 0.375. The convergence
rate is slow (C = 0.997) but very stable in this re-
gion and good quality solutions can be found at the
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expense of considerable computer time. For the
d = 6 case, say at A. =23.94, as 8 varies from
0.04580 to 0.04585, v falls from 0.0943 to 0.0485
and extrapolates (by a method to be discussed)
very accurately to zero at 0 =0.045868. The con-
vergence rates are very low (C= 0.999) but fairly
stable and good quality solutions are found. Now,
however, if we try to construct solutions for 0
& 0„ the values of ~', determined by the first
hundred or so iterations, become negative and the
iterative process also begins to diverge (C &1)
rapidly; i.e., we are unable to find solutions in-
side the line of stability. We believe that this and
the following numerical results are strong evi-
dence that the YBG equation has for d =6 (and d
= 5) a true stability line along which ~ =0.

For the d =6 case we determine the line of sta-
bility by fixing A. and fitting the ~ vs t9 data by
the usual algebraic form In~ = lnA + v In(8, /8 —1),
where A, O„and v are fitting parameters. The
quality of a typical fit can be seen from Table I.
The best fit is for parameter values 0, =0.045 868,
v =0.49993, and lnA =0.89448. Any change in the
last significant figure appreciably worsens the
fit. In Table I, & is the fractional difference be-
tween the numerical values of ~ and the fitting
curve. The fit is neddy good and shows no sign of
worsening at values of 0 nearest 0,. In Table II
we show the results of a series of such fits at
several A. which determines five points on the
(low-w side) of the stability curve. Because of the
large amount of computer time required we have
less extensive data on the high-A. side. The sta-
bility line is found by fitting this data by a quadra-
tic curve 8, (A.) =8 +C(& —A.,)'. The best fit to the
data of Table II is uniformly better than one part
in 10' and determines the critical values I9,

=0.04586798, A, =23.91, and C =2.104 74x10 '.
The curve is very flat near its minimum so that
the data determine ~, much more accurately than

In fact we can assume that the last point in
Table II is the critical point and still obtain a sat-

isfactory quadratic fit. These results, of course,
imply the mean-field value of P, =0.5 for the expo-
nent characterizing the stability line.

We have good quality solutions at 21 points in
the (8,A, ) plane near the low-A side of the stability
line. To see if the data describe mean-field like
behavior we have fitted all the data by the form
z' =D[(8, —8) +C(A -A,)'], where D is the only re-
maining unknown parameter. For D =131 all of
our values of &' are uniformly fitted to better
than 1%. It is difficult to make a firm estimate
of the absolute accuracy to which our numerical
solutions determine ~ but various tests and inter-
nal consistency checks suggest an accuracy of
around 1%, and so we regard the above agree-
ment with mean-field behavior to be as good as,
or perhaps slightly better than, can be expected.
In fact we do not fully understand the considerably
higher accuracy of the stability-line fits.

The critical exponents y and & are to be found
from the compressibility &~. Here we are con-
siderably helped by the prediction, ' from the
analytic studies, that for ~ close to zero E~ ~ ~ '.
We have checked this relation along two isochores
and find that it holds to much better than 1%. We
thus assume that it is true near the stability line
and this implies the mean-field form Kr = [2 '(8,
—8) +B'(A, —A)'] ' for the. compressibility, and
that the exponents have the classical values y =1
and 6 =3. The relationship K~ ~ ~ ' is of con-
siderable practical importance to us because ~ is
computed from short-range values of g(r) where-
as K~ is found by integrating g(r) and strongly de-
pends on accurate values of g(~) at large r. It is
an empirical characteristic of our iterative meth-
od that after a large number of iterations (- 1000)
the convergence rate is the same, and slow, for
all ~ but that for the first few hundred iterations,
the convergence rate for g(~) at small r is much
higher than its asymptotic value. Thus the short-
range values of g(~) are known to good relative
accuracy after a few hundred iterations while it

TABLE I. Data for determination of the stability
temperature 6, at A. = 23.94.

TABLE II. Values of the stability temperature 0, (A)

and exponent v(A) for various ~.

v(A, )

0.045 80
0.045 82
0.045 83
0.045 84
0.045 85

0.094 297
0.079206
0.070 466
0.060 480
0.048 494

—4x 1p
7x 1p-6
3x 1p
7x lp 5

—6x10 5

22.40
22.60
22.80
23.01
23.94

0.045 916
0.045 904
0.045894
0.045 885
0.045 868

0.4942
0.4946
0.4993
0.4967
0.4999
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requires perhaps 2000 iterations to construct K~
to the same accuracy. Thus once we are con-
vinced that K~ ~& ' we save large amounts of
computer time by working with K rather than K~.

We have compared several of our best numeri-
cal solutions for g(r), for 0.05&&&0.08 and r ~ 20,
to the Ornstein-Zernike form and again found
a satisfactory fit, indicating that the exponent p
is equal to 0, as predicted by the analytic studies.
Finally we have done enough work on the d = 5

case to locate the critical point and check that K

along the critical isochore is characterized by an
exponent v =0.5045 which we regard as agree-
ment with the d =6 case.

We feel that the combination of the analytic
studies" and these numerical results make a
convincing case that the YBG equation shows no
true critical region for d ~ 4 and that its critical
behavior is largely mean-field-like for 4 & 4.
There is no way within the YBG framework to di-
rectly determine the phase coexistence boundary,
which presumably lies outside the line of stability.
Hence we cannot determine the traditional expo-
nents P andy'. If we assume, however, that the
stability line and the coexistence curve have the
same exponents, P = P, =0.5, then the result Er
=[A'(6, —9)+B'(X,—A)'] ' implies that y' =y =1.
We emphasize that the above form for &~ is valid
into the stability line, not just to the coexistence
curve. Whether or not the solutions of the YBG
equation in the region between the coexistence
curve and the stability line have any "physical"

interpretation as metastable states is not clear
to us,
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Note added. —We have recently obtained nu-
merical solutions along bvo isochores on the high-
density side of the stability line. These data are
well described by the same expressions used in
this paper and so the critical behavior is sym-
metric between the high- and low-density sides
of the critical point, as is expected. This is of
some interest in view of the recently discovered
strong asymmetry of the coexistence curve of the
Percus- Yevick equation [see S. Fishman and
M. E. Fisher, Physica (Utrecht) 108A, 1 (1981)].
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Implementation of universality "reduces" the most general simple gauge group that
treats all fermions of one color irreducibly to the gauge group 6 = U(l)I3 SU(2) @SU(2)'.
For the natural choice of Higgs representation, the G gauge theory is the same, at low
energy, as the standard U(1) (3 SU(2) theory. The fundamental representation of the uni-
fying group breaks up into identical families of SU(2) doublets.
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In spite of the overwhelming experimental suc-
cess' of the standard U(1) g SU(2) model of weak
(including electromagnetic; the term "weak" is
used in this sense throughout this Letter) inter-
actions, theoretical questions remain, notably an
understanding of families or generations of fermi-

ons. Current grand unified models' do not ad-
dress this problem: They deal with a fixed small
number of families [1 in the case of SU(5) and
SO(10)] at a time. In this note, I indicate the ba-
sic features of an approach' to the description of
families based on a proper incorporation of the
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