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Equilibrium Fluctuations in Fluid Layers: Effects of Transport Across Fluid-Solid Interfaces
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The effects of momentum and energy transport across the fluid-solid interfaces on the
dynamic structure factor of a fluid layer have been studied. New spectral features have
been found; their positions and line shapes are sensitive to the boundary conditions.
This theory suggests that experiments that probe the dynamic structure factor (such as
light scattering) may be important for studying the nature of interfacial transport.
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The transport of momentum and energy across fluid-solid interfaces may significantly affect the dy-
namic properties of fluids, which are typically confined by solid walls. Traditionally, in the hydrody-
namic theory of fluids,™? the interfaces are modeled by empirical boundary conditions on the hydrody-
namic variables, without a detailed understanding of the complicated nature of the dynamics of the in-
terfacial transport. In addition to the theoretical difficulties,® ® to date there has been no sensitive ex-
perimental probe of interfacial transport over a wide range of frequencies.
 In this Letter, we report theoretical analysis of the equilibrium dynamic structure factor of a fluid
layer confined by two parallel solid walls. We show that the dynamic structure factor is affected by the
energy and momentum transport across the interfaces. It exhibits novel peaks whose positions and
line shapes depend sensitively on the boundary conditions, and may prove to be a useful probe of the
transport porperties of interfaces, over a wide frequency range.

Consider an equilibrium fluid layer of infinite extent in the xy plane, bounded by solid walls at z
=+ L/2. The fluctuations 6p (mass density), 6T (temperature), and U (velocity) are given by the solu-
tions of the linearized hydrodynamic equations

80p/dt +p,(V+1)=0, (1)
8U/dt +c*(Vop +ap,VoT )/ pgy — vV — (£ +v/3)v(v-1) =0, 2)
36T /ot +(y = 1)(V W)/ a0 —ykV36T =0, (3)

where p, is the mean density, c is the adiabatic speed of sound, « is the thermal expansion coefficient,
v and ¢ are shear and bulk kinematic viscosities, y= C,/ C,, and k is the thermal diffusivity. The quan-
tity of experimental interest is the dynamic structure factor,® which is the Fourier transform of the
time-dependent density autocorrelation function

SE,T;t)=(6p(T,t)0p (", 0)). ' @)

Equations (1)-(3) are solved most easily by first Fourier transforming in the xy plane and Laplace
transforming in time so that a hydrodynamic variable 6A assumes the form

6A(y,z;8)= @) [“dt [.7 dxdyexpl-st —i(k,x +k,v)]6AF,1), (5)

where %2 =kx2+ky2. The set of Egs. (1)-(3) then poses a boundary-value problem in z, in terms of the
initial values of the variables 56A(%,,z;0).

The empirical boundary condition on the velocity normal to the surface, «,, is #,=0, corresponding
to no mass transport. The parallel velocity components (, or «,) are customarily believed® to vanish
at a solid wall (“stick” boundary conditions). This corresponds to a very efficient transfer of tangen-
tial momentum across the interface. In many applications, a “slip” condition has been employed for
mathematical simplicity. In this case 8u,/0z = au/ 9z =0, corresponding to no tangential momentum
transport. While well established at low frequencies, the validity of the “stick” boundary condition at
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high frequencies is untested. The interfacial energy transport is assumed to be given by the heat flux,
leading to boundary conditions on temperature. A common form is

0T =0T ,; PoC,k(88T/082)=p,C,° k(90T /0z),

where subscript s refers to the solid. For the simple case in which T ¢ obeys the heat equation (367 ,/
8t =k V8T ) the boundary condition on 67 (k,,z;s) of the fluid becomes

36T /9z + €4(ky,s)6T =0; z=+3L, (6)
where
€r(ky,8)=(ps Cp*/po C ks /)i +5/K ). : (7)

Notice that in the limit k /x -~ Eq. (6) reduces to 67 =0 (perfectly conducting wall). For k /x—0 we
see that 86T /0z — 0, which is the perfect insulator limit.

We have found the exact solutions of Egs. (1)-(3) for arbitrary values of €, and for both “stick” and
“slip” conditions. With the solution for &p (12” ,z;s) at hand, one can find the dynamic correlation func-
tion (6p (¢, ,2; s)6p(ky,2’;t=0)) in terms of the static correlation function {(6p (%, ,z;t=0)dp(k,2’;t=0)).
This is a quantity of great interest since it is observable in a variety of experimental techniques, par-
ticularly light scattering. In the present case, it is quite involved algebraically and it is convenient to
present the nature of our findings by considering its projection on the Fourier modes defined by

Sy kb, ks w)= n'lReff_l;‘//zz dz dz' exp(— i2nnz/L+i2n'nz'/L)X6p(k,2 ;8 =i w)bp (k) ,2’;t=0)), (8)

where k,=2n1/L. As a result of lack of translational invariance in z, there are off-diagonal elements
in the dynamic structure factor. Here we discuss only the diagonal elements, denoted by S(&,k,; w),
since they are more readily probed experimentally, e.g., by light scattering. We assume that the off-
diagonal elements in the static structure factor are negligible.

In the case of “stick” boundary conditions, there are two new peaks in the dynamic structure factor,
for which, if the layer thickness is such that exp[k,L(I"k,/c)/?] > 1, the dispersion relation depends
only on &, and is

w=tkyc+i[T+ARk)k,2, 9)
where I'=3[(¢ +%v) + (y = 1)x] is the usual sound attenuation coefficient,
[2A (ku )]1/2 = (ZF')1/2 - (’)’ - 1)K1/2{(Ds Cps/Po Cp)[ (Ks /K)(li ik 1Ks /C)]llz + 1}- 1, (10)

and T’ = 3[v"?+( - 1)k*/?]>. Since A(k,) is explicitly complex, the positions of these new peaks ¢an be
shifted from + &, c depending on the ratio of k,/k. Thus, for k. k,;/c> 1 the dispersion relation be-
comes

Tk, \Y2 p,C, K T’c\"2/p,C,\ k
W=tk [1+ -1)<———u> —1—9——]+i[1‘+r'—( —1)(———) (—u> —:’k 2 11a
nc (1% c Dscps K, Y k, Pscps K, I ( )

whereas for k,/k <1, we have
w=tkyc+i[T+3v+ = 1)k ) (0, C,%/po Cp) Ry 2 (11b)

Therefore, for k k,/c> 1, the effective speed of sound depends on &, /2,

The physical origin of these new peaks is clear. The component of the sound wave which propagates
parallel to the “sticky” boundaries experiences additional dissipation due to the shear created by the
wall (reflected by the appearance of v in A). For k,>0, the walls can also act as a heat sink. Since
the sound is not isothermal, there is also extra dissipation due to heat conduction between fluid and
solid walls (reflected by the appearance of k and k, in A). With this picture, one would expect that in
the limit of “slip,” at thermally insulating boundaries there should be no extra dissipation and, conse-
quently, no new peaks in the dynamic structure factor; direct calculation confirms this.”

The contribution of these peaks to the dynamic structure factor is, in general, very complicated and
will not be given here. However, in the limit of perfectly conducting solid walls (k,/k - «) and for &>
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FIG. 1. The dynamic structure factor S(k, %, ;w) for w in the vicinity of w =kc, at two values of 2,. The fluid pa~-
rameters are of argon at 85 K: k =2.3x10"2 em?/sec, »=f =9x 103 cm?®/sec, ¢=8.5% 104 cm/sec, y=2.2. Also
poCp =ps Cy° is assumed. In all cases ky=5X 10% em™! and the velocity field is assumed to vanish at the boundaries
(“stick” boundary conditions). The Brillouin line (dot-dashed curve) of the infinite system is shown for comparison.
The solid curve pertains to poor thermal diffusivity of the solid (ks /k =1073), while the dashed curve to high ther-

mal diffusivity (ks /x =109),

»>2Tk %/ c this contribution is simply

AS(kn,kz; w)_ 2

6+k||c—w

- /leI"')m(k )2[ .
Sy ,k,3t=0) v L)\ c Ry ) L%+ (w—kyc) 6%+ (w+kc)

where 6= (I'+T”)k,%. Hence, this contribution to
S(ky,k,;w) becomes significant only for sufficient-
ly small values of L such that kL~ (I'"%k,/c)"?;
i.e., for parameters typical for fluids and &,
typical for light scattering experiments, the new
peaks should be observable for L~ 100 ym, in
which case there will be L-dependent corrections
to the dispersion given in Eq. (10). Even more
important is the fact that for such small values

of L the fluid layer acts as a waveguide. Neglect-
ing dissipation for a moment, we can use the the-
ory of ideal waveguides® to realize that there ex-
ist a series of standing waves in the z directions
which are the natural modes (rather than those
calculated by the Fourier transform), which are
supported by the waveguide whenever the disper-
sion relation

k2= (w/c) - (k,®)?

is satisfied. For rigid boundaries we have k,°
=mn/L,m=0,1,2,3 ... . Inour analysis, we
have fixed 2, and looked at the projection of

(13)

S+kc+w
e, (12)

|S(k,, ,2,2';w) on the Fourier mode exp(i2nnz/L)

as a function of w. Whenever [(w/c)? —k,*]/? hits
a value of k,*=mn/L, we should see resonance.
However, the Fourier projection used eliminated
the standing waves which are orthogonal to it
(i.e., 2mn/L=F,°,m+n) and leaves those that are
not [i.e., (2m +1)r/L, and 2n7/L itself]. The
amplitudes of these peaks depend on their prox-
imity to the Brillouin peak of the infinite system.
Therefore, particularly revealing is the dynamic
structure factor in the neighborhood of frequen-
cies that characterize the Brillouin peak.® In
Fig. 1, we present a typical plot of S(&,k,; w)
[evaluated from the exact solutions to Egs. (1)-
(3)] for a simple fluid (argon at 85 K) for the two
first values of k, (0, 27/L), superimposed on the
Brillouin line of the infinite system. Shown are
the results for a fluid layer which is 100 um
thick with “stick” boundary conditions on the ve-
locity field, and two different thermal diffusiv-
ities of the solid walls. The infinite system lines

419



VoLUME 48, NUMBER 6

PHYSICAL REVIEW LETTERS

8 FEBRUARY 1982

i
|
,'|| A:L = 100 pum
- H B: 200 pm -
iy € 400 um
[
- 1 -
)
'l |
z iC
T I NI n
3 1
d i\
o ) |
(=]
= B\
o [ | n
S
3
< | A -
@ |
) |
|
|
/ |
/
\
L i \ |
==1" | | 1 1 f
424 4.28 4.32 436
w(108 sec™)

FIG. 2. The dynamic structure factor S (ky,k,;w) near
the Brillouin frequency for three values of the layer
thickness. The dashed curve is the infinite-system
Brillouin line. The parameters are as in Fig. 1, with
k, =21/L .

correspond to k= (¢*+£,%)%, In the layer the
spectrum consists of more lines, quite distinct
in the case of poor heat conductivity but some-
what smeared out in the case of high heat conduc-
tivity. Notice the high sensitivity to boundary
conditions. In Fig. 2, we show the thickness de-
pendence of the fine structure. Evidently, we
are discussing thin-layer effects, although the
thickness is orders of magnitude larger than that
involved in light scattering from thin films® (i.e.,
order of nanometers).

It is seen in Fig, 1 that the new “dissipative”
peaks and the peaks due to standing waves are
not resolved since fluid parameters were chosen
to demonstrate the effect on the dynamic struc-
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ture factor of the coupling of the temperature
fluctuations in the fluid to the solid walls. The
detailed line shapes are determined, of course,
by the overall dissipation. However, one expects
that an efficient heat-conducting solid would
cause broader spectral features due to increased
dissipation through heat conduction to the walls.
Indeed this effect is seen very clearly in Fig. 1.

All the effects discussed here occur when the
dynamics of the solid consists only of heat diffu-
sion. The influence of the propagating modes in
the solid on the dynamic structure factor in the
fluid will be considered elsewhere.”

The above theory suggests that experiments
that probe the dynamics of the structure factor
(light and neutron scattering, sound attenuation
and dispersion) may prove to be a useful probe of
interfacial transport.
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