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—(&y)]') oI- (~y), as can be seen from Figs. 2

and 3.
The rather explosive growth of the departure

from the Millikan behavior in going from the slip-
dominated regime (large-particle limit) to the
new physics regime (small-particle limit) sug-
gests a certain nonlinear coupling between the
slowly decaying flow field and the fluctuating
force. The strength of the coupling increases
with increasing Brownian diffusion velocity and
the Basset contribution, i.e., the persistence of
the flow field, indeed grows as Kp. No exact
theory is available at present.
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Two methods have been developed to calculate
structural energies from the electron-ion Hamil-
tonian, (1) perturbation expansions' for phonons
considered as small perturbations upon the crys-
tal structure and (2) direct calculations' ' of the
total energy of a crystal with "frozen phonon"
displacements of arbitrary magnitude, treated
on an equal basis with the energy of the undis-
torted lattice. The simplicity of the direct meth-

od has made it possible to carry out accurate cal-
culations' ' with no essential approximations
other than the local density form for exchange
and correlation. ' Remarkable successes have
been found for Si, Ge, and GaAs including pre-
diction of stable crystal structures, ' displacive
phase transitions, ' elastic constants, "and fre-
quencies, ' ' pressure dependences, ' ' and an-
harmonic terms '~' for phonons at k' =0 and at

406 1982 The American Physical Society



VOLUME 48, NUMBER 6 PHYSICAL REVIEW LETTERS 8 FEBRUARY 1/82

several high-symmetry points on the boundary
of the Brillouin zone. The drawback of the meth-
od used to date is that application to other A

points is very difficult because calculations of
much larger size would be required. This is a
serious limitation; for example, it is not possible
to treat directly LO phonons for 0 -0 in ionic
crystals because of the nonanalytic k dependence
of the macroscopic electric fields. " The per-
turbation method can deal with Coulomb interac-
tions and with phonons at any k (Refs. 1, 9); how-

ever, it is restricted to small displacements and
its use has been limited because it requires a
large computation of the dielectric matrix'- —a
formidable amount of information of which only
a small part is needed for determination of
phonon properties.

In this Letter we present a new method in which
ab initio force constants between planes of atoms
in real space are calculated directly. The har-
monic force constants determine entire phonon
dispersion curves &u(k), in addition to which can
be calculated anharmonic terms to any order.
Our approach is based upon self-consistent cal-
culations of the electronic charge density in a
crystal with a single plane of atoms displaced.
With use of the Hellman-Feynman theorem, "
forces on a displaced atom K and all other atoms
K' can be found, thus determining from a single
calculation many independent force constants
C(K, K'). We show that periodic supercells of

manageable size are sufficient to determine all
forces including long-range Coulomb terms"
and that it is possible to calculate directly mac-
roscopic effective charges (e~* and e r*) and the

allo o
0 o o o

l4

6

static dielectric constant &.

We apply the method to GaAs determining inter-
planar force constants, phonon dispersion, and
eigenvectors for all branches in the [100]direc-
tion. This case is chosen because we have pre-
»ou»y' calculated the equilibrium lattice con-
stant (5.71 A, 1'/& above experiment) and phonon
energies at I and X, which provide an indepen-
dent check on the results of the present method.
For any k=(k, 0, 0) the (100) atomic planes vibrate
as rigid units so that the problem is exactly
equivalent to a diatomic linear chain with alternat-
ing Ga and As atoms. The solution" is complete-
ly determined by the Ga and As masses and the
set of interplanar force constants, defined as
the force on a given atom per unit displacement
of an entire plane.

Consider first the transverse (T) vibrations.
Figure 1 defines a periodic cell consisting of
twelve atoms with one Ga atom per cell displaced
by u = 0.01a in the [011]direction. We find the
self-consistent solutions for the charge density
n(r) by proceeding in exactly the same way as in
other "supercell" calculations described in de-
tail in Ref. 13. From this charge density the
forces on all the atoms in the cell can be calcu-
lated rigorously, as follows from the Hellman-
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FIG. 1. Periodic supercells defined by displacement
of (100) planes. Description of phonons propagating in
the [ 100j direction requires four self-consistent cal-
culations with one Ga (As) plane per cell displaced in
the [011] transverse (T) or [100] longitudinal (1.) di-
rection. The longitudinal case also contains informa-
tion which determines the effective charges (ez~ and
ez*) and dielectric constant ~.

FIG. 2. Phonon dispersion along the [100] direction
predicted from force constants calculated by use of
periodic supercells containing twelve atoms {solid lines)
and eight atoms (broken lines). We consider as most
accurate solid lines for transverse and broken lines for
longitudinal branches (see text) . Open symbols denote
experimental points (Ref. 14}, and solid symbols, pre-
vious frozen-phonon" calculations (Ref. 4) at 1 and ~
using the same Hamiltonian.
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Feynman theorem ' In th'n is way, from one self-
consistent calculation we f' d fin orces on each
atom in the unit cell1, i.e., twelve independent
interplanar force constants C(K, K') (if one as-
sumes that the
borin 1

a ey extend only up to the sixth h-neig-
g p ane . This procedure is th en repeated

with As displaced. From th tm e set of force con-
stants we obtain the TA and TO hononn p onon branches
s own in Fig. . The results show that all fea-
tures of the ex e '

p rimental dispersion curves"
are well reproduced. Note, for example, the
shape and position of the TO branch, the agree-
ment in the elastic re ion
fl

gion, and the characteristic
lattening of the TA branch h h

b orcy shear fore
nc w ich is determined

orces and is very sensitive to the
longest-range forceses. Our calculations show that

th
the longest-range forces ar t Ce no oulombic and

at shear forces at the fifth nei hb
are ~ 0 of the shear first neighbor force (~0.8%

ru 1

also performed calculations on small er iquad-
rup ed) unit cells which pro 'd fovi e orce constants

fe
up to fourth neighbors (which hoic, owever, are af-
ected by the nonvanishing fifth neighbor inter-

actions). The resulting dispersion curves are
shown by broken lines. As expected th
ment of

e, e agree-
of w i e the changeof TA branch is worsened h 1

in the TO is indiscrenible.
The solid oints '

p s in Fig. 2 show the results at F
and X obtained previously4 b the fro
method with us

y e rozen-phonon
o wi h use of exactly the same Hamilto '

the mismat ch of order 5%-6% indicates the ae-
onian;

curacy of the present calculations and sets a
limit upon the influence of forces beyond the
sixth neighboring plane. Th ' te in ernal consisten-
cy of the calculations can be '

d d f
fact that the first-ne'

e ]u ge from the
-neighbor interplanar constants

determined b twy wo independent calculations (with
Ga and As dis 1s isp aced, respectively) agree i

) = (K, K), to within 4%, and that the
translation ''on invariance condition'" C'(K K)
= -Q'„C (K,K') is obeyed to within 1%.

The isplacement pattern for obta'o aining longitu-

Fi. I
in orces is shown by the arrows lab 1 d I. '

'g. . The calculation proceeds exactly as in
the transverse cae case to provide the perturbed elec-
tronic charge density and forces on the on e atoms.

is point it would be straightforward to
determine ion '

talx e
ngitudinal force constant 'f thn

' si ecrys-
were nonpolar. [We describe elsewhere" "

results for ~&k& in Ge, where independent calcu-
lations give the I 0 and TO at k = 0
(1.1 i .) I

a = degenerate to
In a polar crystal such as GaAs, how-

ever, the LO modes egenerate macroscopic elec-
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FIG. 3. Self-consistent
l

potential averaged over (1.00)

p anes for ion ituding' inal Ga dssplacements indicated b
arrows here and in Fig. 1 g ) . The

7P

e slope of the aver-
a e ar o t e cell {brokenage potential in the central pa t f th
&nes) is the depolarizing field E frie „, rom which can be

cu a ed the effective charges and dielec
as discus d hse in t e text.

an ie ectric constant

tric fields which give the LO-TO p andsplittin and
require special attention. The longitudinal dis-

field
placement of charged planesnes gives rise to local

or oo of each dis-ields restricted to the neighb h d
placed plane plus a macroscopic field whose
magnitude de e
In the lar e er

e epends upon the boundary co d tn i ions.
arge periodic cells the boundary condi-

ions require the average field to vanish which
is equivalent to aen to adding a depolarizing field E„,

is can be seen inconstant over the crystal. Th'

i . 3 -consis ent poten-ig. 3 where we show the self-co ' t t
ia x including F.„, which is the a

s ope of V(x) in the central part of the cell
(dashed line). The field E i„gives rise to forces
i'„iKg of equal magnitude on ea h teac a om in the cell
and opposite sign for Ga and As. If we subtract
the forces f, (K) then the remaining forces con-

fi
tain all effects of the local dca an macroscopic

Our result
ields accompanying an L m d fo e oranyk~0.
ur results show that the forces on the three

central atoms in Fig. I are due only to E be-
cause the hay ave the proper relation for Ga and
As [and they are very small in Ge (Ref'n e e. 16

in the
can be evaluated and subtra t d 1rac e eav-

'
g e desired longitudinal forces h h

onl to the
es w ic extend

in dis
n y o e fourth neighboring plane. Th e result-

n in ig. asing ispersion curves are shown i F' .
solid lines, which agree well with thwi e experi-
men a points and with our previous frozen-
phonon results' at X. We al h

e longitudinal force constants using a smaller
eight-atom unit cell where th e convergence is
easier to achieve. The results are shown in Fi .
2 by broken lines. Siince we have demonstrated

s own in Fig.

that the fifth- and sixth-ne hb f-neig or forces are
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small for L modes, the forces and &u(k) result-
ing from the smaller computations are to be con.-
sidered as more reliable.

The self-consistent charge density and poten-
tial found for the longitudinal case contains in
addition much more information which can now
be utilized. The depolarizing field is E„=4&I'
where I' is the polarization density resulting
from the displacement of a single atom per cell.
As we have shown previously, "this polarization
is determined by the longitudinal effective charge
el* of an atom in the displaced plane, so that E„
=+4~e~*u/V«». For E~ calculated as in Fig. 3
we find e~*(Ga) =+0.162

I
e

I and e,*(As) = -0.165lel
(i.e., le~~/e I

=0.163 +0.002) which compare very
well with the value I e~*/e I

=0.158+ 0.005 which
we found previously'" using a different displace-
ment pattern that avoids the depolarizing field.
Moreover, in the present method we can calcu-
late independently the "transverse" effective
charge e ~*, defined'" as the force on an atom
K per unit internal field (such as E„), e r*(K)
=fe(K)/E„. We use the force on the central atom
(to eliminate extraneous short-range forces as
discussed above) in the two independent cases
and we find e r*(Ga) =+ 2.005

I e I and e r*(As)
=-1.'I25le I (i.e. Ier*/e I

=1 87+0.14) "om-
pared to the experimental value +2.16. Further-
more, using the relation e~*=e~*a, where ~ is
the static electronic dielectric constant including
all local-field effects, ' we find e = 11.4+ 1.6,
compared to the experimental value 10.9. Finally,
there is another fundamental relation, "

to to'( I') —u) Tp'( r) = (4w/mV)(e r*)'/e

= (4v/ mV) e ~*er*.

The small difference on the left-hand side has a
large relative uncertainty; nevertheless our most
reliable results (broken lines in Fig. 2) obey (1)
to within 19/o.

In conclusion we have demonstrated the power
of direct calculations of the self-consistent
charge density for crystals with planes displaced
in patterns like those shown in Fig. 1. From the
density can be extracted forces on many inequiva-
lent atoms (using the Hellman-Feynman theorem")
and thus force constants, phonon dispersion,
eigenvectors, and even macroscopic electrical
properties, such as effective charges and di-
electric constants. Other information, such as
the internal strain parameter, anharmonicity
nonlinearity of the effective charges, and dielec-
tric constant also can be calculated by this meth-

od and will be presented elsewhere. "
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