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Dominance of Monopole and Quadrupole Pairs in the Nilsson Model
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The intrinsic state of the Nilsson model is analyzed in terms of nucleon pairs coupled
to spins 0+, 2+, 4+, 6+, . . . . It is shown that 0 and 2+ pairs dominate the Cooper pair
which constitutes the intrinsic state with large quadrupole deformation.
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The rotational band can be described in terms
of its intrinsic state. In the description of Bohr
and Mottelson, ' the structure of the band is deter-
mined by the deformation of the nuclear surface.
The intrinsic state is constructed microscopical-
ly from nucleons moving in the deformed single-
particle field, which is produced by the deforma-
tion of the nucleus. A prescription to calculate
the deformed field is presented in the Nilsson
model. '

We analyze in this Letter the intrinsic state in
terms of nucleon pairs, restricting ourselves to
the ground-state rotational band. The intrinsic
state is the n-nucleon ground state in the de-
formed single-particle field, which is expressed
in terms of energies of deformed single-particle
orbits (the Nilsson orbits). Since the pairing
correlation is important, ' the BCS calculation is
often performed, and the intrinsic state is ob-
tained as the condensate state of N Cooper pairs
(N =n/2). The Cooper pair is written in general
as a linear combination of nucleon pairs. Since
the deformed field is not a scalar, the Cooper
pair contains pairs of various spins. We re-
write it as a linear combination of pairs of spin
J; and calculate the amplitudes of these spin-J
pairs. It has been widely believed that pairs of
various spins are needed to describe the intrinsic
state." This Letter will, however, demonstrate
that the Cooper pair in the Nilsson orbits turns
out to be comprised primarily of the 0' and 2'
pairs in regions of large quadrupole deformation.
This remarkable feature has not been reported
previously.

Recently the interacting boson model (IBM) has
been proposed and used to describe quadrupole
collective states including rotational ones."
This model describes the collective states having
0' (s) and 2' (d) bosons. Phenomenological stud-
ies on rotational nuclei yielded results which fit-

The single-particle field hD consists of scalar
(g,) and quadrupole ($,) terms; ho =$, +g,. The

$, term stands for the spherical potential. "The

$, term, being a quadrupole operator, originates
in the quadrupole interaction. Its strength de-
pends on the deformation parameter, "6;

$2=-+ 5M@) r CO~2~(9), (2)

where M and co denote the nucleon mass and the
oscillator frequency for the spherical potential
(her=41& 't' MeV), and r and 0 are coordinates
in the intrinsic frame.

We shall consider two examples, one in which
the single-nucleon levels (of 5 = 0) are degenerate
and one in which they are not. In the first case
the formulas are easy to understand. However,
the example with nondegenerate single-nucleon

ted well to experimental data, "suggesting that
the application of the IBM to rotational nuclei
seems to be successful.

A major assumption of the IBM from the micro-
scopic point of view is that the 0' (S) and 2' (D)
collective nucleon pairs play dominant roles in
the quadrupole collective states. "' " Quite re
cently, it was suggested in Refs. 4 and 5 that this
assumption does not hold in strongly deformed
nuclei. The consequence of this Letter as de-
scribed above, however, seems to support the
assumption.

The intrinsic state is the lowest eigenstate of
the intrinsic Hamiltonian, h. In the Nilsson
model, this Hamiltonian consists of the deformed
single-particle field, h L„and the monopole pair-
ing interaction, h~; h =h~+h~. The pairing inter-
action is defined as h~ = -GS,S, where G is a
constant, and
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( 2N) = 3I '
[ g (v /u )a ta - t] "~ 0),

m&0
(3)

where X is a normalization constant. This state
can be rewritten as

i 2N) = (Z ) -'(A')"
i 0),

with

A~=Pc a ~a-~,
m&0

(5)

where X' is a normalization constant, and ampli-
tudes c are given by c ~v„/u„with normaliza. -
tion & 0 [ AAt

~
0) = 1.

The A~ operator can be expressed in a linear
combination of spin-~ pairs as

A'=g„x, e'&'), (6)

where x& denote amplitudes, and 6 is given
in the single j orbit by 8t~ "& = 2v 2 [a, ~a,. ~] ~ "&.

The x, amplitudes are calculated by x~= (0~
x AQt'~) ~0), which becomes, in the single j
orbit, x„=Q „c v'2(j, j, m, -m~ J, 0). Clebsch-
Gordan coefficients in this equation are approxi-
mated for large j by (-)' [(2J+1)/(2j+1)]' '
xP~(m/j ) with P~ being the Legendre polynomial.

levels is more realistic. We begin by consider-
ing the degenerate-level case in which the nu-
cleons are filling one single j orbit. The $, term
is then omitted, since it is equivalent to a con-
stant. Utilizing the formula. (r') = (N+ 2)h/Af~,
and evaluating the harmonic-oscillator quanta 1V

by N+2-(&A)' ' (Ref. 13), we rewrite Eq. (2) as
$, =-316C,~'&(&). Since, for large j, ( jmi C,'"
x

~ jm) = ——,
' [3(m/j)' —1], the energy shift caused

by $, is calculated approximately as (jm
~ $, ~ jm)

=85[3(m/j)'-1]. For 6&0, orbits with m=+j
are lowest, and the single-particle energy be-
comes higher as

~
m

~
decreases. The level order-

ing is reversed for 6)0. The total splitting
caused by this $, is -24& MeV, which becomes
7.2 MeV for

~
5(=0.3.

In order to construct the intrinsic state, the
BCS calculation is performed for the intrinsic
Hamiltonian h. The wave function describing the
intrinsic state is then ~BCS-¹1)=g„(u +v
xa ta-t) ~0), where a-~ creates the time-rever-
sal state of a state rn, and u and v denote the
u and v factors in the BCS theory. This wave
function does not conserve the number of nucle-
ons. Its projection on a fixed nucleon number 2lV

is given by

c =1/vN for meR; c =0 for mEER. (8)

Although the signs of the ~ 's and c 's are in
principle arbitrary in the normal-phase case,
we take uniform signs, since the normal-phase
case is introduced as a limiting situation of gen-
eral cases with nonvanishing monopole pairing.

We first consider D&0, since lower orbits have
larger quadrupole moments than for 6)0. The
occupied-orbit set R is given by R = (m ~

m = +j,
+ (j- 1), . . . , + (j - N +1)}. The x, and x, ampli-
tudes in Eq. (6) are then calculated as

x, = (N/n)",

1-- 2-"-

(9a)

(9b)

with 0= j+ ~.
The quantity x~', which is denoted hereafter by

II(J'), means the probability that the spin-J pair
is found in the Cooper pair. In the present case,
II (0) is equal to N/0, giving rise to 50%%uz at the
middle of the shell. The probability II(2) is also
proportional to N/0 in the lowest order. The
probability II(0) + II(2) is denoted by II(0-2).
From Eqs. (9a) and (Qb), one clearly sees that
II(0-2) increases very rapidly as N/0, and be-
comes about 86% at N/0-0. 4. We emphasize
that this behavior is independent of the value of j,
in spite of the fact that the number of possible
pairs is given by 0 (=j+—,').

The pairing interaction h~ is now turned on.
Since the pairing interaction pushes down the 0'
pair, II(0-2) naturally increases as the strength
G. In Fig. 1, the probabilities Il(J) (J=0,2, 4, 6)
and II(0-2) are shown for j =~2 with G =0.2 MeV
and 5 = —0.3. The value of G is evaluated from
the formula G = 30/A MeV in Refs. 1 and 14,
taking A = 150. Again, the rapid increase of
II(0-2) with N/0 is clearly seen. Furthermore,
the probabilities II(4) and II(6) decrease as N/0,
and become quite small when N/0) ~. The in-
trinsic quadrupole moment Q, = 2x'C, ('~(8) is
also shown as a function of N in Fig. 1, where

Thus, for large j,
2(2J+1) ~'

x, = . P c I (m/j).
m&0

We look into the x~ amplitudes in an analytic
way, by omitting the pairing interaction from the
intrinsic Hamiltonian. This case corresponds to
the normal phase, giving rise to v =1, u =0 for
mER, and v =0, u = I for m(ER, with 8 being
the set of occupied orbits. We then obtain
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FIG. 1. Probabilities to find 0, 2, 4, and 6 pairs
in the Cooper pair obtained in the Nilsson model. The
single j =+2 orbit is taken with the deformed single-
particle field of ~ = —0.30 and the pairing force of G
=0.20 MeV. The number of nucleon pairs (A') is varied
from the beginning of the shell to the end, while its
fraction of the total degeneracy 0 is shown. The sum
of the probabilities of the 0+ and 2+ pairs (0+-2+) and
the sum of the probabilities of the 0, 2+, and 4+ pairs
(0 -2 -4+) are also shown. The intrinsic quadrupole
moment (Qo) is indicated by the broken line. The mo-
ment has no units since x in Qo is replaced by unity.

x' in Q, is replaced by unity because of the j =~2

single j orbit. As is well known, the Nilsson
model is applicable in regions of large quadru-
pole moments. Figure 1 shows that the 0+ and
2' pairs are indeed dominant in such strongly
deformed regions. " The probability II (0-2-4) =

II(0)+ II(2)+ II(4) is also shown in Fig. 1. This
probability is already 98%% around N/0 = —,

' where
strong deformation starts. Thus, one can de-
scribe the Cooper pair almost perfectly by in-
cluding only the 4' pair in addition to the 0' and
2' pairs. We mention that the trend seen in Fig.
1 is quite insensitive to the ratio G/5. Although
the description in terms of holes is more suitable
for N/Q» —,', this trend remains in the hole sys-
tem.

Figure 2(a) shows c ' s and v "s for N= 7 as
an example. Note that c is proportional to v /
u . In Fig. 2(b), the Legendre polynomials P„
P2, P~, and P, are shown as a function of m/j.
The Legendre polynomial Pz(x) has J'/2 nodes
between x = 0 and x = 1 for even J. Therefore,
P~(x) cllallges its s1gn vely frequently lf cT ls
la,rge. The t- amplitude, on the other hand, has
the same sign (taken positive) because of the
monopole pairing, and is a, smooth function of ~.
Equation (7) therefore yields a small value of
~x~~ for large J'because of cancellation among
the c+~(m/j) terms. This cancellation arises
at smaller J a,s N increases.

m/j

FIG. 2. (a) Amplitudes c~ in Eq. (5) and probabilities
v~ for N=7 in Fig. l. (b) Legendre polynomials P&(m/
j) in Eq. (7).

We have discussed so far cases of 6&0. Prob-
abilities II(0-2) for Ei &0 are remarkably larger
than the corresponding ones for 5& 0 as a result
of narrower energy spacings between lower or-
bits. This will be shown in a forthcoming paper.

Realistic cases with many nondegenerate single-
particle orbits are considered next. The BCS
calculation is performed for the Nilsson orbits
where several j orbits are admixed as a result of
the deformed field. The At operator in Eq. (5) is
obtained from the u and v factors given by this
BCS calculation. Extracting 9~ ~ operators in
Eq. (6) by the angular momentum projection of
At, we calculate x~ in Eq. (6).

An example of such a calculation is shown in
Fig. 3. Single-particle orbits Ok„„1f»„ lf,~„
2p„„2p,~, , and Oi »„are included. 6 = 0.25,
G =0.20 MeV, and A - 150 are assumed. The
spherical part of the single-particle field, which
contains the spherical harmonic-oscillator po-
tential, the (1s) and the(ll) terms, is the same as
adopted in Refs. 1 and 16. In Fig. 3, proba, bilities
II(J), II(0-2), and II(0-2-4) are shown as func-
tions of N and N/0 tA=Q», . (j+ 2)]. The intrinsic
quadrupole moment Q, is also plotted in the fig-
ure. Similarly to Fig. 1, the probabilities II(0),
II(2), II(0-2), and II(0-2-4) increase with N, and
become large in the region of large quadrupole
moment. The probability II(0-2), for instance,
is already 85% at N = 6, i.e. , N/0 = 0.27. Thus,
the major trends observed in the single-j-orbit
ease are also seen in this realistic case. The
present case is just an exa, mple, and the domi-
nant roles of the 0+ and 2' pairs are found in
general.
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We thank Professor N. Onishi for providing a
computer progra, m for the BCS calculation.

Note added. —After completion of this work, we
learned that a similar conclusion has been ob-
tained in an investigation of Ref. 12 by R. A.
Broglia and E. Maglione. "
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We here introduce a 2' pair operator by the
coIIIInutntlon relntlon P ~ [ Q ~ $2] ~

wllel e
(, is introduced in Eq. (2). The overlap between
Q~ '~ and F~~'~ is very large in general. For in-
stance, in the present system, it is & 0.99 for
1» N» 17. This similarity between Q~ '~ and
F~ ' implies that, in the Cooper pair, the 2+

pair absorbs almost all quadrupole strength from
the 0' pair. Thus, the 0' and 2' pairs are
coupled strongly by the quadrupole field, dom-
inating the Cooper pair. "

In summary, it has been shown that the Cooper
pair in the Nilsson model consists mainly of the
0' and 2' pairs in regions of large quadrupole
deformation. If the 4+ pair is included, the
Cooper pair is described almost perfectly in
those regions. "

FIG. 3. Same as Fig. 1 except that a realistic system
with single-particle orbits h &/» f~/» f5/» p 3/» p &/»
and i &3/2 is considered and 6 = 0.25 is taken. The ~
dependence of Q 0 is included with A = 150.
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