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Since the metric g;, +f;f& is asymptotically flat,
we can apply our previous arguments in Ref. 11
to prove that the metric g&, +f;f, can be deformed
conformally to an asymptotically flat metric
whose scalar curvature is zero and whose ADM
mass is equal to 2P minus a nonnegative quantity.
Hence by the theorem that we proved in Ref. 1,
2p is positive. Therefore, it remains to prove
that f exists with the required asymptotic expan-
sion where p is a positive multiple of the Bondi
mass,

The existence of the solution f to Eq. (1) with
the required expansion can be proved in the same
way as in Ref. 11. We take a sequence of spheres
S; tending to infinity of M and on each S;, we de-
fine f; so that it behaves like r +p lnr+qr ' on S;.
Then we try to solve the boundary-value problem
for Eq. (1) with boundary value f;. This is done
exactly as in Ref. 11 by perturbing of Eq. (1) and
taking a limit. The boundary-value problem can
be solved in the generalized sense by allowing f,
to go to infinity on the apparent horizon of M.
A generalization of Eq. (2) is crucial in the proof.
This is Eq. (2.25) in Ref. 11. After solving the
boundary-value problem, we let i tend to infinity
and prove that f; converges to a solution f with
the required asymptotic expansion. As in Ref. 11,
the behavior off near the apparent horizon is
well understood. As a result, we can assume
that f does not blow up for all practical purposes
(see the arguments in Sec. 4 of Ref. 11).

Once the existence af f has been established,
the relation of P (in the expansion of f) to the

Bondi mass can be computed by using Eq. (1).
It is a positive multiple of m and this finishes the
proof of the positivity of the Bondi mass.

Finally, we remark that Ref. 16 can be used to
take care of the possible angular dependence of
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The positive-energy conjecture is proved at null infinity. That is, an isolated system
in general relativity can never radiate away more energy than is given by its total
Arnowitt-Des er-Misner energy.
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Most physical systems cannot radiate away
more energy than they have initially. This is
usually a trivial consequence of a conserved

stress-energy tensor with a positive timelike
component. However, as is well known, the
gravitational field does not have a well-defined
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stress-energy tensor. Thus, there is the possi-
bility that a finite gravitating system might be
able to radiate arbitrarily large amounts of en-
ergy. The idea that this is impossible in general
relativity is known as the positive-energy con-
jecture at null infinity.

An isolated system in general relativity is de-
scribed by a space-time which is asymptotically
flat. The curvature vanishes both at large space-
like distances from the source (spatial infinity)
and at large null distances (null infinity). In each
of these asymptotic regions one can define an
asymptotic energy-momentum four -vector; at
spatial infinity it is called the Arnowitt-Deser-
Misner' four-momentum P, , whereas at null
infinity, it is called the Bondi' four-momentum

BP,
The difference between these two quantities is

illustrated by Fig. I. The vector P, " repre-
sents the net energy and momentum crossing an
asymptotically flat spacelike surface Z. Since 2
eventually intersects all emitted radiation, P, "
is time independent, and represents the total en-
ergy of the system. However, P, represents the
net energy and momentum crossing an asymptoti-
cally null surface N (that is, a spacelike surface
which asymptotically approaches a null surface
of constant retarded time, u). Since N does not
intersect all emitted radiation, P, depends on
u and represents the remaining energy-momen-
tum of the system at time u. Not surprisingly,
at future null infinity, 8', the past limit of P,
is equal to P,",' and the Bondi energy (the
contraction of P, with any time translation) is
a decreasing function of u.

It has recently been shown that if the stress-
energy tensor obeys a local positivity condition,

adiation

then P, is a future-directed timelike or null

vector. This was first established by Schoen
and Yau, 4 and later given a simple proof by
Witten. ' Thus, physically reasonable gravitating
systems initially have positive total energy. The
question of whether such systems can radiate
more energy than they initially have is the ques-
tion of whether the Bondi energy can become
negative. We shall show here that it cannot. To
be precise, we prove the following.

Theorem. —Let (M, g„) be a space-time that
satisfies the following: (i) It is asymptotically
flat at future null infinity. ' (ii) The dominant en-
ergy condition holds': T„t' is future directed
for all future-directed t'. (iii) There exists a
nonsingular spacelike surface N which asymptot-
ically approaches the null cone of constant re-
tarded time u near null infinity. Then P, (u) is
a future-directed timelike or null vector. Fur-
thermore, P, (u) vanishes iff the space-time is
flat in the domain of dependence of N, D(N).

Recall that D(N) (Ref. 7) is the region of M
which is determined by initial data on ¹

Since
N is asymptotically null, this is not the entire
space-time. Note that although the statement of
this theorem is similar to that about P, , the
present theorem is much stronger: If P, is
future directed, then P, is also future di-
rected. A similar theorem holds for past null

inf inity.
The technique to be used in proving the theorem

is similar to that used by Witten, ' and involves a
recently discovered generalization' of Witten's
proof. Schoen and Yau have independently found

a proof of the above theorem' using methods
similar to their previous work. ' We will use
two-component spinor notation, "with spinor
indices denoted by capital letters and tensor
indices (each equivalent to a pair of spinor indi-
ces) by lower-case letters.

Let (M, g„) be a space-time which satisfies the

three conditions of the theorem. Let n" be a
solution of the Weyl equation

~AA
A

ADIT,
Pa

FIG. 1. The ADM energy-momentum, as measured
on surfaces like ~, is independent of time even though
the source is evolving. The Bondi energy-momentum
as measured on surfaces like N is time dependent.

We now calculate V' V&,E» where K~=+~+~.
is the null vector determined by n~. Expansion
of the antisymmetrization yields two terms. For
the first, commute the derivatives and note that
K, is divergence free from (1). For the second,
recall that (1) implies that

~m~ &A + &g&A p

372



VOLUME 48, NUMBER 6 PHYSICAL REVIEW LETTERS 8 FEBRUARY 1982

Combination of these terms yields

V'V, .K» = —V, ~A V'~A, +4~x.,x', (3)

where Einstein's equation has been used to re-
place the curvature terms by the stress-energy
tensor. Integration of this over N yields

,' f—V.K, dS"

= J (-V„u„V'o.„.+4~T.,K')dZ'. (4)

L(~) =(8~)-'f V. (,dS", (5)

where S is an asymptotic two-sphere at given re-
tarded time. If $' is asymptotically a translation
$
' ', then the linkage defines the Bondi four-

momentum; L(() = $
' 'P, (u). Now, the left-

hand side of (4) is identical to (5), and it is an
immediate consequence of the Weyl equation that
K' is divergence free. Therefore, one need only
choose a such that K' becomes asymptotically
a null translation, to have the left-hand side of
(4) related to P, (u). This is always possible, '
and such solutions to the Weyl equation will be
called asymptotically constant. "

We now turn to the second step. Consider the
right-hand side of (4). The stress-energy term
always contributes positively by virtue of the
dominant energy condition. The first term can
in general have either sign. However, suppose
there exists a unit timelike vector field t such
that on N

t V eA=0. (6)

S is a two-sphere at null infinity with volume
element dS" normal to S. This equation plays
an important role in our proof of the theorem.

Our proof of the first part of the theorem pro-
ceeds in two steps. First, we show that n" can
be chosen to have asymptotic behavior so that
the left-hand side of (4) is related to P, (u).
Then, we show that this n" can be extended to a
smooth Weyl solution in a neighborhood of N with
the right-hand side of (4) positive.

For the first step we briefly review the Geroch-
Winicour formulation of asymptotic linkages. "
Let $' be a divergence-free vector field which
asymptotically becomes a generator of a spaee-
time symmetry. To be more precise, one re-
quires that $' admit a smooth extension to null
infinity such that its restriction to 8', $~'~', is
a, generator of the Bondi-Metzner-Sachs gzoup. "
The linkage associated with g' at retarded time
u is

A 5 A (8)

where D, = V, —t, t"V, is the projection of V',

into N. If v'=0, this equation reduces to the
equation Witten used to prove the positivity of
the ADM mass. However, this choice is not as
useful on asymptotically null surfaces, since it
is difficult to prove the existence of solutions.
If one writes D».n"=0 in terms of ordinary
derivatives in N, one finds that there are coeffi-
cients which become unbounded asymptotically
and standard existence theorems break down.

However, we can now use the freedom in the

choice of t' to find an equation with well-behaved
asymptotic behavior. For any choice of ~' with
~v'v,

~
&I, Eq. (8) is uniformly elliptic, and one

can show from the positivity of Eq. (4) that (8)
has vanishing kernel. " We claim that if t' is
chosen to be asymptotically a. time translation
(i.e., t ' admits an extension such that its re-
striction to 8' is a BMS time translation) then
(8) has the correct asymptotic behavior such that
standard theorems can be applied to prove exis-
tence of asymptotically constant solutions to (8).
To see this, let e ' "be an arbitrary asymptot-
ically constant spinor on N, and K "=n ~ n
Denoting the differential operator in (8) by L, we
wish to solve

(9)

with n '~ = O(r '). Expanding (9) in an asymptoti-
cally Cartesian coordinate system" one finds
that the coefficients of the first-order derivatives
tend to constants, and the coefficients of the non-
derivative terms vanish faster than r '. Thus
one epn apply the theorem of Christodoulou and
Choquet-Bruhat" to conclude that solutions exist.

373

Since the metric orthogonal to t ' is negative de-
finite, the first term is now positive. We thus
consider solutions of the Weyl equation that obey
(6) on N. One can characterize such solutions by
their initial data. Recall" that given any spinor
field nA on a spaeelike surface Z, there exists
a unique solution of the Weyl equation in D(Z)
which agrees with the initial data n .

We now wish to choose initial data. such that (6)
is satisfied on ¹ We decompose t' into compo-
nents normal and tangential to N:

It e ta+&a

where t' is the unit normal to &, t'&, =O, and f
=(] +p'v )~'. Equation (6) together with the Weyl
equation is equivalent to the following equation
on¹
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This shows that K(o)'P, (u) -0. Since K(o)' is an arbitrary null vector, we conclude that P, s(u)

must be future directed. This completes the proof of the first part of the theorem.
This result could have been obtained by working entirely with fields on N and not using the Weyl equa-

tion. However, the calculations are rather more complex. We sketch this alternative. Again we
start with an asymptotically constant solution to (8). Any such solution obeys the identity

-D'[PD, K~+h, ~v'D, K~]=-2t ~ [D~n+~n~. +(v~D~n„)(v'D, n~ )]+8vT,~t'K (10)

where h, '= 6,' —t, l,
" is the projection operator

into N. The right-hand side of this identity is
nonnegative since

~
v'v,

~
&1. One integrates (10)

over N, and converts the left-hand side into a
surface integral. Finally, it follows from (8)
that this surface integral is just 8'(' 'P, '(u).

To prove the second part of the theorem we use
an argument which is essentially identical to one
used by Witten. ' Assume P, (u) =0. As before,
let a."be any asymptotically constant solution to
(8) on N, and evolve to obtain a solution to the
Weyl equation in a neighborhood of N. Since the
left-hand side of (4) vanishes, the right-hand side
must vanish. This implies D e =0 on N. Since
there exists a basis of covariantly constant
spinors on N, we have

By making local deformations of N and repeating
this argument we conclude R„,„=O in D(N). This
completes the proof.

Another proof of the first part of this theorem
has recently been given by Ludvigsen and Vick-
el s.
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