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It is demonstrated that the total mass of a nontrivial isolated physical system is posi-
tive even after part of its mass has been lost because of gravitational radiation. This
method is an extension of the one that the authors used in the proof of the classical posi~

tive-mass conjecture.
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The positive-mass theorem states that for a
nontrivial isolated physical system, the total en-
ergy, which includes contributions from both mat-
ter and gravitation, is positive. This theorem
was first proved by the authors.’?> Recently,
Witten® has published an alternative proof depend-
ing on the existence of a certain harmonic spinor,
which is asymptotic to a constant spinor in a cer-
tain rate. Very recently, Parker and Taubes*
were able to use some estimates of Nirenberg
and Walker® and Cantor® to justify the existence
with the required rate. (Witten has pointed out
that his idea came from supergravity. In fact,
Grisaru,” following the work of Deser and Teitel-
boim,? has given a formal proof of the positivity
using supergravity.)

After the confirmation of the total positivity of
the total mass (as viewed from the spatial infinity),
it is natural to ask whether the mass is still posi-
tive if part of the mass has been lost as a result
of gravitational radiation. The theory of gravita-
tional radiation was worked out by Bondi, Van der
Burg, and Metzner? and Sachs.!® They associate
to each null cone a number which is called the
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Bondi mass of the null cone. The Bondi mass is
interpreted as the total mass of the isolated physi-
cal system measured after the loss due to the
gravitational radiation up to that time. Bondi and
Sachs proved that when time goes on, the Bondi
mass decreases and the loss is measured by the
“news function.”

The purpose of this Letter is to show that our
previous argument® can be modified to demon-
strate the positivity of the Bondi mass. Our idea
can be described as follows. Given a spacelike
hypersurface asymptotic to the given null cone in
the space-time, we construct a three-dimension-
al asymptotically flat initial-data set whose
Arnowitt-Deser-Misner (ADM) mass is not great-
er than the Bondi mass of the given null cone.

The positivity of the Bondi mass then follows

from our previous proven theorem on the positiv-
ity of the ADM mass. Note that this new initial-
data set is not necessarily embeddable in the orig-
inal space-time. The construction of this new ini-
tial-data set is very similar to the construction
that we used earlier. Our construction allows
the existence of singularities of the black-hole
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type. It will be described in more detail in what
follows.

It should be noted that Horowitz and Perry'?
have independently announced a proof of the posi-
tivity of the Bondi mass under the assumption
that the space-time is asymptotically flat in the
sense of Penrose'® and that there exists a non-
singular three-dimensional spacelike hypersur-
face which is asymptotic to the null cone. Their
method is very different from ours. They rnodify|

Witten’s approach. While our method is very sen-
sitive to the choice of the spacelike hypersurface
asymptotic to the null cone, their method is not.
We were also informed that Israel and Nester'*
and Ludvigsen and Vickers'® also announced a
similar result recently.

We follow Sachs’s paper and write the space-
time metric in a normal form. Thus, let « be a
retarded coordinate, » be the radial coordinate,
and 6 and ¢ be the spherical coordinates. Then
we assume that the metric can be written as

(Ve?® /r)au® - 2e2® qu ar +v%h 45 (@x* —utdu)(@dx® —u® du)
b

where

2% 4 pdx?dx® = (27 +€2°)d62 +4 sind sink(y — 6)d0d ¢ +(sind)?@e 27 + e~ 28)dq2,

(Here the indices A and B range from 2 to 3 and
x2=0, x3=¢.)
We assume that

=—7+m +0(r 1),
B==lc|?/4*+0("Y),
y =(Rec +Imc)/r +O(r™?),
5 =(Rec—Imc)/¥ +O(r ™ 3).

The Bondi mass for the slice 4 =0 is defined by
integrating m along the sphere at infinity.

By applying a supertranslation, we can trans-
form the null space « =0 to a future null space «
=a with o = 0 so that with respect to the new co-
ordinate system »’ =u —a, the function ¢ is pure-
ly imaginary. We are going to prove that the
Bondi mass associated with the null cone 4’ =0 is
positive. By the mass-loss formula of Bondi,
this will prove the positivity of the Bondi mass of
the null cone « =0, As a consequence, we can as-
sume, without loss of generality, that ¢ is purely
imaginary.

Our idea now is to choose a spacelike hypersur-
face H of the form u =r Y +ar 3 +b» 4+ 00" %) so
that the radial part of the induced metric on this
hypersurface behaves like [1 +m7™3 +0(~ %] (1
+7%)"1(dr)?. By choosing the coefficient of » ¢
suitably in the above expansion of ¥, we can ar-
range that the radial term of the second funda-
mental form of H behaves like [1 +0(~ %] (1 +»?)"1
ar®,

R— 22 (hij —pij)z"'in(hiq _[’i4)2" 22i51(hi4 -pf4)y

With this choice of H, we are able to find a new
initial-data set so that the total mass of this ini-
tial-data set is a positive multiple of the Bondi
mass of the null cone « =0. The construction of
this initial-data set is very similar to our method
of proving the positivity of the ADM mass and
can be described as follows.

As in Ref. 11, we seek a function f which solves
the equation

y_ I /i
2 <g’ "1 +IVfI2>((1 IV ‘p“> =0, M)

i,5

where g;; is the induced metric on H, p;; is the
second fundamental form of H, andf;; is the sec-
ond covariant derivative of f in directions x* and
x7.

We replace the metric g;; on H by the metric
g:i+fif;. Inorder for the new metric g;;+f;f; to
be asymptotically Euclidean, we require f to be
asymptotically 7 +p Inv +qr"* +... . It is clear
that such an asymptotic expansion of / guarantees
that the metric g;; +f;f; is asymptotically flat and
its ADM mass is 2p.

In our previous papers (Refs. 2 and 11), we
have already demonstrated that if Eq. (1) holds,
then the dominant energy condition can be formu-
lated in a more geometric fashion. Namely, let
H be the graph of f in the product space M XR.
Then let R be the scalar curvature of the induced
metric (Which is given by g;; +f;f;) and let %;; be
the second fundamental form of H in the space M
XR. Then

@)

where the index 4 corresponds to the normal of the graph of f and D; is the covariant differentiation

taken on the graph.
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Since the metric g;; +f;f; is asymptotically flat,
we can apply our previous arguments in Ref. 11
to prove that the metric g;; +f,f; can be deformed
conformally to an asymptotically flat metric
whose scalar curvature is zero and whose ADM
mass is equal to 2p minus a nonnegative quantity.
Hence by the theorem that we proved in Ref. 1,
2p is positive. Therefore, it remains to prove
that f exists with the required asymptotic expan-
sion where p is a positive multiple of the Bondi
mass.

The existence of the solutionf to Eq. (1) with
the required expansion can be proved in the same
way as in Ref. 11, We take a sequence of spheres
S; tending to infinity of M and on each S;, we de-
fine f; so that it behaves like » +p ln +g»™! on S;.
Then we try to solve the boundary-value problem
for Eq. (1) with boundary value f;. This is done
exactly as in Ref. 11 by perturbing of Eq. (1) and
taking a limit. The boundary-value problem can
be solved in the generalized sense by allowing f;
to go to infinity on the apparent horizon of M.

A generalization of Eq. (2) is crucial in the proof.
This is Eq. (2.25) in Ref. 11. After solving the
boundary-value problem, we let ¢ tend to infinity
and prove that f; converges to a solution f with
the required asymptotic expansion. As in Ref. 11,
the behavior of / near the apparent horizon is
well understood. As a result, we can assume
that / does not blow up for all practical purposes
(see the arguments in Sec. 4 of Ref. 11).

Once the existence of / has been established,
the relation of p (in the expansion of f) to the

Bondi mass can be computed by using Eq. (1).
It is a positive multiple of #z and this finishes the
proof of the positivity of the Bondi mass.

Finally, we remark that Ref. 16 can be used to
take care of the possible angular dependence of
m.
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The positive-energy conjecture is proved at null infinity. That is, an isolated system
in general relativity can never radiate away more energy than is given by its total

Arnowitt-Deser-Misner energy.

PACS numbers: 04.20.Cv, 04.30.+x

Most physical systems cannot radiate away
more energy than they have initially. This is
usually a trivial consequence of a conserved

stress-energy tensor with a positive timelike
component. However, as is well known, the
gravitational field does not have a well-defined
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