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From here, q, =q, =(&a, &a, &a). Similarly, from
the relations (10) and (11)we find q, = C,"q, =(-,'a,

1 1 i g I 1

=C, q, =(-8a, -&a, 8a). This result shows that
the values of the band quasicoordinates q„ for the
valence band of Ge coincide with the vectors of
the star for the symmetry center q, of the space
group 0„'. In proving this result no use was
made of the explicit form of the periodic po-
tential. What this means is that the band quasi-
coordinates q„ for any composite band of the
(c, 1) symmetry will reproduce the star of q, for
0„'. It can be checked that the values of q, in
Eq. (11)will reproduce the star of the symmetry
center for any of the irreducible band representa-
tions of the space group 0„'. This result can be
generalized to any composite band with giVen
symmetry of a solid belonging to any space group:
The eigenvalues of the BC operator will give the
symmetry centers of the space group of the solid
and vice versa (if the latter are given we also
know the possible eigenvalues of the BC operator).

In summary, it has been shown that for each
band in a solid one can define a band-center
operator which is a conserved quantity. Its eigen-
values are the average position of the electron in
different bands, and they also coincide with the
symmetry centers of the space group for the

particular solid.
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The Friedel sum rule for impurities is related to the Luttinger requirement that the
volume of the Fermi surface of a crystal is independent of interactions. As a consequence
important results derived by use of the Friedel sum rule, e.g. , the T —0 properties of
the Kondo problem, can be extended to periodic cases. Considered explicitly are the re-
markable consequences for Fermi surfaces and Fermi-liquid properties of periodic
Kondo and mixed-valence systems.

PACS numbers: 71.45.Gm, 72.15.Qm, 75.20.Hr

There are two well-known sum rules which re-
late properties of states at the Fermi energy p,

to the number of fermions, the Friedel sum rule'
on phase shifts at p, caused by an impurity and
the Luttinger sum rule' on the volume enclosed
by the Fermi surface in a perfect crystal. The
derivation by Luttinger showed that the sum

rule' is a rigorous result of the analytic proper-
ties of Fermi liquids, "including interactions
between fermions to all orders. The same tech-
niques were used by Langer and Ambegaokar~ to
provide a general proof of the Friedel sum rule.
In subsequent years Fermi-liquid theory includ-
ing the Friedel sum rule has been one of' the
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most powerful tools in theoretical physics among
its consequences are rigorous expressions for
impurity scattering at T= 0,4 the "orthogonality
catastrophe" and the resulting forms for x-ray
edges, ' and the low-temperature properties of the
impurity Kondo problem '.' In the last case the
sum rule and the Fermi-liquid analysis have been
confirmed in detail by exact solutions'" of the
simplest Hamiltonians describing the Kondo prob-
lem; even at this stage, however, the sum rule
is the only rigorous justification that the results
apply to real metals. '

The subject of this Letter is the relation of the
Friedel and Luttinger sum rules and the conse-
quences of the unified sum rule for periodic sys-
tems with strong interactions. The relation is
implicit in the work of Langer and Ambegaokar, 4

but apparently it has neither been stated explicit-
ly nor has its importance been realized in the
intervening twenty years. The central point of

the present work is that the extensive work on
impurities' "can be mapped onto periodic sys-
tems with consequences of particular significance
because of the requirements of translational sym-
metry. We shall consider explicitly the unsolved
problems of much current interest for periodic
Kondo and mixed-valence systems"" and we
shall see that the sum rule leads to remarkable
consequences for the Fermi surface and resulting
physical properties.

The Fermi-surface sum rule can be derived in
terms of the exact one-electron Green's func-
tion' '" Ga (z) = (z -H „'—Z„(z)} ', where H'

is a noninteracting Hamiltonian, Z is the proper
self-energy, and n is a symmetry label. The
basis of Fermi-liquid theory at T = 0 is that quasi-
particle states are well defined at the Fermi en-
ergy p, , i.e., that Z„(p) is Hermitian for each
a." From the analytic conditions which follow
for Z(z), the analysis of Luttinger' leads directly
to the general form of the sum rule,

N=(2wi) 'P Tr/In[-G (p, -iq)] —In[-Ga(p, +iq)] j,
where 1V is the number of electrons and the right-
hand side is a sum over the phases of G (p).' '"
Since +(p) is Hermitian, the right-hand side
can be evaluated in terms of the eigenvalues E "

of H „'+Z„(p), counting unity for each F.„"& p,
zero for E„"& p,, and a fractional value for E "

In the periodic case the translational sym-
metry of the many-body system leads to con-
servation of momentum k within the Brillouin
zone; then n -k and n denotes bands and spin.
The Fermi surface of the interacting system is
defined by F.„"=p., and (1) becomes the Luttinger
sum rule, ""

! electrons per cell. The Friedel sum rule can be
derived' from the difference in (1) caused by a
localized perturbation in an infinite system: n
labels the states in the point symmetry of the
impurity and the changes are described by phase
shifts 6„(z), which at p are given by~

2i5„(p)

= & Tr (ln[- G ( p, —iq) ] —ln[ —G„(p, + i 7l) ]].
Thus (1) leads directly to the Friedel sum rule
for interacting electrons, '

N =P 9(p-E, ")= V„, (2) (3)

which equates the volume of the exact Fermi sur-
face VFS in one Brillouin zone to the number of

The utility of the sum rule can be illustrated by
the simplest Hamiltonian which contains the
essence of Kondo and mixed-valence effects, " "

H=Zaa'ad~a daa+Z;a(&yf;a f;a+2«a'& a +V(f a'd;a+d;a f;a)]. (4)

Here d labels a simple band with dispersion ~~
and width W, f an atomiclike state with no de-
generacy except for spin and having a Coulomb
interaction U, and V the small f-d hybridization,
taken to be site diagonal. For large U the f
spectral weight is split into two parts at &f and
sf+ U, each with width -6- V'/W. Equation (4)
describes the Kondo regime for &f «p, and ~f
+ U» p,, where both f peaks are well removed
from p and the f occupation is 1. There is a
continuous variation as &f- p to the mixed-va-

lence regime with nonintegral f occupation. In
the impurity case where the f state is restricted
to a single site i, Eq. (4) is the Anderson Hamil-
tonian" and the large Usymmetr-ic case (a half-
filled d band with ez = -U/2, ez+ U= U/2) is equi-
valent' to a, spin--,' Kondo model with J- V'/U.
The Friedel sum rule (3) can be applied using
only the condition that the ground state is a non-
magnetic singlet. ' ' It follows that 5,( p) = n /2
for each spin, i.e., the maximum effect upon the
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Fermi surface allowed by the unitarity limit,
even if the f spectral weight is almost completely
removed from p, by a large U and the coupling V
is small. This occurs because of a many-body
resonance at p,, having height 1/L to satisfy the
sum rule' '" and width' "TK -exp(-W/J). The
solution evolves continuously to TK- ~ in the
mixed-valence regime. '" Furthermore, No-
zieres' and others' ' "'"have derived the low -T
properties from Fermi-liquid theory of the states
near p,, which has now been verified by exact
solutions. " This establishes the applicability
of Fermi-liquid theory to such impurity prob-
lems with strong interactions and forms the basis
for understanding more general cases.

The periodic version of Eq. (4), the Anderson
lattice, "' has been studied extensively in the
case with one f site i and two electrons per unit
cell."'""If U =0 the solution is an insulator
with a gap; therefore for U ~0, so long as there
is no new long-range order, . the sum rule re-
quires that V&S=0. This can be satisfied either
by an insulating gap or, if any states cross p, by
a semimetallic Fermi surface with equal electron
and hole contributions. " There is now strong
evidence that the ground state is a nonmagnetic
insulator, based upon numerical calculations on
finite cells,"renormalization-group results on
the one-dimensional Kondo lattice, "and coherent-
potential approximation' and variational" calcu-
lations for mixed valence. The sum rule is satis-
fied because for large U there is a many-body
resonance" at p in complete analogy with the im-
purity case. The special feature caused by peri-
odicity is structure in the resonance density of
states, which results in the insulating gap for
this Hamiltonian.

The new results of this paper are for periodic
cases where there is no insulating gap. The sum
rule leads to properties not found in any theoreti-
cal calculation to date because it has not yet been
possible to produce a complete description recon-
ciling the strong local correlations in the f states
with a Fermi surface obeying the sum rule. Fig-
ure 1 shows schematically energy vs k in a case
with t~o wide d bands spanning the Fermi surface
and the f spectral weight at ez and ez+U. If the
d and f electrons were decoupled, then the total
Fermi surface counting both d bands would con-
tain n" electrons. The true Fermi surface, how-
ever, must contain n" +n~ electrons according to
the Luttinger sum rule. This is accomplished via
a many-body resonance in &,(s) near p giving re-
normalized Fermi wave vectors 4 F, as shown in

MOMENTUM I& DENSITY OF STATES

FIG. 1. Schematic spectrum of the Kondo lattice
includirg split-off bands at ~y and ~~ +U, the many-
body resonance of width -TK, and the well-defined
renormalized Fermi surface. The scale T& is expand-
ed for clarity Aca. se with two wide bands is shown,
one hybridized with the f and one not for this direction
of k'. The dotted line shows the decoupled band e&, and
the solid lines and crosshatching, the effects of coup-
ling to the f. The density of states is similar to the
impurity Kondo case (see Fig. 20 of Ref. 8) except that
periodicity leads to structure in the many-body reso-
nance.

Fig. 1 for one band (which changes from eleetron-
like to holelike). The other band is shown unaf-
fected to illustrate the fact that along high-sym-
metry directions the d-band states at p may be
decoupled from the f states. On the right is
shown the schematic density of states, which is
similar to that for an impurity" with a resonance
at p of width I'K. In addition, however, perio-
dicity leads to structure in the resonance includ-
ing critical points and a tendency to form the gap
which actually occurs for Eq. (4). This tendency
suggests that the "four-peak" structure of Fig. 1
is characteristic of the periodic Kondo problem
just as three peaks are characteristic of the im-
purity case." So long as the symmetry does not
change, the results vary continuously to the
mixed-valence limit, as in the impurity case.

The essential conclusion is that, for the anorna-
lous cases where there are fractionally occupied
f states which act in many ways as localized and
atomiclike but nevertheless do not order mag-
netically, then the many-body states at and near
the Fermi energy are modified coherently by
their presence: (1) The volume of the Fermi
surface is the same as if the f states formed sim-
ple extended bands at p, and (2) states near p are
described by an interacting Fermi liquid having a
characteristic energy scale - T K. This is particu-
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larly significant in the periodic case since it
shows that the low-energy excitations behave like
those of narrow extended bands whether or not
the f states are "at" the Fermi energy. In fact,
narrow-band behavior, on an energy scale much
less than &, is direct evidence for Kondo-like ef-
fects with the split f spectral weight and the many-
body resonance as illustrated in Fig. l.

There is now a large literature which shows
that Kondo and mixed-valence effects occur in
many anomalous rare-earth solids. "" perhaps
the most significant recent results are for crys-
tals involving Ce, where the Kondo-like situation
has been demonstrated by photoemission20 experi-
ments on y-Ce, CeAl„etc. Narrow-band Fermi-
liquid behavior has been observed in many cas-
es,"'"and in CeSn, the Fermi surface has been
studied using the de Haas-van Alphen effect";
some parts are similar to its normal analog
LaSn, and other parts are qualitatively different
with high masses, exactly like the extended nar-
row-band behavior discussed above and shown in
Fig. 1. A more detailed analysis of this and other
anomalous crystals will be given elsewhere. "

The relations between impurity and periodic
cases can be clarified further by general consid-
erations. One primary difference is the possibil-
ity of a phase transition to a state of different
symmetry and we can identify three situations:
(1) If ordering occurs with T, ))T K, as in ordi-
nary rare earths, application of the sum rule to
the ordered state is completely consistent with
ordinary Fermi surfaces. (2) lf ordering occurs
with T, & T K, each phase is anomalous and acts
as an interacting Fermi liquid of the correct sym-
metry. (3) If there is no new order, then the
present work leads also to the result that certain
average properties are independent of the sym-
metry, so that impurity results apply to general
solids, crystalline or disordered. For example,
the well-known ratio' ' '"

)(/y of enhancements
of susceptibility g and specific heat y is a general
property of Fermi liquids, which has been con-
firmed experimentally for a large number of
anomalous rare-earth crystals. "

En summary, I have presented a unified sum
rule which encompasses the Friedel sum rule' on
impurity phase shifts and the Luttinger condition'
on the volume of the Fermi surface in a crystal.
This relation and the extensive previous work on
impurities "'""lead directly to interesting
properties of periodic Kondo and mixed-valence

systems and provide the first step in understand-
ing the low-temperature properties of such strong-
ly interacting periodic systems.
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