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Band Center —A Conserved Quantity in Solids
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The average positions of different bands in a solid are shown to be equal to the symmetry
centers of the space group of the solid. These positions turn out to be eigenvalues of a
band-center operator which is a conserved quantity for translationally invariant systems.

PACS numbers: 71.25.-s, 61.50.Em

One of the important consequences of transla-
tional symmetry in solids is the conservation of
quasimomentum k (also known as Bloch momen-
tum and crystal momentum). This conservation
law has to do with the symmetry only and does
not depend on the particular form of the periodic
potential. ' Another widely used conserved quan-
tity in solids is the one-band V (k) velocity op-
erator. ' Unlike k, which is universally con-
served, the conservation of the velocity for the
band n depends explicitly on the existence of such
a band in the solid. What this means is that the
velocity conservation depends not only on the
translational invariance of the solid but also on
its band structure. When well-separated bands
exist their symmetry specification is closely re-
lated to the symmetry centers of the space group
of the solid. ' ' One should expect that in a solid
with well-defined bands the symmetry centers of
its space group should be expressible in terms
of a band-position operator. Such an operator
should be a conserved quantity because the sym-
metry centers of each space group have fixed
values for each solid.

In this Letter I define a positionlike conserved
operator for a solid with wel. l-defined bands. I
call it the band-center (BC) operator. Its eigen-
values turn out to give the average positions of
an electron in different bands and they coincide
with the symmetry centers of the space group of
the solid.

Recently, a lattice operator R„was defined and
it was shown to be connected to the one-band
r„„(k)coordinate operator. ' For each band n with
a Bloch function („„(r)and a Wannier function
a„(r) the spectrum of R„ is a lattice relative to
the expectation value of the radius vector r:

(X„„(k))= Ja„~(r)ra„(r)d'r.

The lattice operator R„and the quantity (1) will
be used in this Letter in defining the BC operator.

Let us start with a one-dimensional crystal and
define the following band-center operator Q „(2))/

Q „(2))/a) =exp[iq„(k)2v/ajar „. (2)

Here 2m/ ais the reciprocal lattice constant and

q„(k) is the one-band x„„(k)position operators:

q„(k) =x„„(k)= i 8/&k+X„„(k),

where

X„„(h)=—g„,~(x)
~

i—+x)g„„(x)dx
2)T

(3)

(4)

=exp(iq„2w/a) with q„=(X„„(k)). (5)

In what follows q„will be called the band quasi-
coordinate for the BC operator. It should be
pointed out that (X„„(k))by itself is phase de-
pendent ' and it is defined only modulo a (the
constant of the crystal). However, since in Eq.
(5) q„=(X„„(k))appears in the exponential, the
operator Q „(k) is phase independent. Equation

and the integration is over the unit cell of the
Bravais lattice. The operator Q „(2)T/a) is by
definition diagonal in the band index. We want to
show that Q „(2w/a) is a conserved quantity. For
this we have to show that it commutes with the
Hamiltonian of the Bloch electron. It was shown
in Ref. 8 that the Wannier functions a„(x—va) for
the minimal uncertainty of the coordinate are the
eigenfunctions of the operator (3) with the eigen-
values av+ (X„„(k)),where (X„„(k))is given by
Eq. (1) and v=0, + 1, . . . . Correspondingly,
a„(x —va) are also eigenfunctions of Q „(2m/a)
but with the single eigenvalue (X„„(k)). This
means that any linear combination of the a„(x
—va) is an eigenfunction of Q „(2'/a). In par-
ticular, the Bloch function g„„(x)corresponding
to the coordinate- minimal-uncertainty Wannier
function is also an eigenfunction of Q „(2))/a).
We see therefore that Q „(2)T/a) and the Hamilton-
ian have a common complete set of eigenfunctions
(the Bloch functions), meaning that these two

operators commute. In its diagonal form the
band-center operator Q „(2m/a) becomes

Q „(2))/a)
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(5) [or more generally, Eq. (2)] defines therefore
a conserved quantity for an electron in a one-
dimensional crystal. The eigenvalues of this
operator are given by the band quasicoordinate
q„. They are the expectation values (X„„(k))
(modulo a) of the position operator x in different
bands of the solid. One can also check directly
that the quantities (X„„(k))do not change with
time. For this let us assume that at I; = 0,
(X„„(k))was given by Eq. (1) for the one-dimen-
sional crystal. For t) 0, a„(x, t) will be

a„(x, t) = /exp[ —(iP)e„(k)tQ„,(x)dk, (6)

where c„(k) is the energy of the band. This
means that at any later time the Wannier func-
tion a„(x, t) is defined by a, Bloch function which
differs from the original one by the phase
exp[- (i/h)e„(k)t]. However, since a phase
change of the Bloch function does not change
(X„„(k))(modulo a), we conclude that the eigen-
values of the BC operator are conserved quanti-
ties.

The band-center operator (2) has an exponential
form and is of the same nature as the operators
defining the quasimomentum k {which is defined
by the exponential operator exp[(i/&)Pa]} and the
quasicoordinate q (the latter is defined by
exp[ix(2w/a)]}. It is for this reason that q„de-
fined by the BC operator (2) [or (5)] is called the
band quasicoordinate.

When the crystal possesses inversion symmetry
one can easily check that the band quasicoordinate
q„ in (5) assumes only two values, q„=0 or &a.
This follows from the following argument. When
the crystal has the inversion symmetry, the
phase of the Bloch function can always be chosen
in such a way as to make the Wannier function
even or odd around either of the centers': (1)x
=0 or (2) x =+2a. By using Eq. (1) for a one-
dimensional crystal, it follows that for the center
x = 0 [Ia„(x)=+ a„(x)], (X„„(k))= 0 while for x =+ 2a
[Ia„(x+ ~a) =+ a„(x+ 2a)], (X„„(k))= + 2a. Since
this holds for any band n and since the eigenvalues
of Q„„(27t/a) are phase independent it follows that
for one-dimensional crystals with a center of in-
version and with no other restriction on the peri-
odic potential the band quasicoordinate q„=0 or
—,'a. On the other hand it is known that a one-
dimensional crystal with inversion symmetry has
two inequivalent inversion centers, ' ' one at x =0
and one at x =-,'a. The existence of two inequival-
ent inversion centers in a crystal is a conse-
quence of the translational symmetry alone (if
there is one there are always two!) and it does

not depend on the particular form of the periodic
potential. We arrive here at a very interesting
result that the eigenvalues q„of the BC operator
coincide with the symmetry centers (for the in-
version) of the crystal. The band center can
therefore be given the physical meaning of an
operator describing the symmetry centers of the
solid. This also holds in the case when the crys-
tal has no symmetry center. In the latter case
q„will, in general, assume different values for
different bands and it will cover all the range
from 0, to a in the unit cell of its variation. This
is in full agreement with the fact that for crystals
with no symmetry (apart from transl. ations) all
the points in the Wigner-Seitz cell have the unit
element symmetry only (no symmetry). The band
center can therefore be interpreted in any one-
dimensional crystal as describing its symmetry
centers. With this interpretation the conserva-
tion of the BC operator should come as no sur-
prise because the symmetry centers have a well-
defined physical meaning in the space of the crys-
tal. Thus, if by measuring q„we find only two
possible values (0 or —,a) this should be an indica-
tion that the crystal has the inversion symmetry.
However, when q„also has other values, the
crystal has no inversion symmetry.

The definition of a band-center operator can
also be extended to three-dimensional crystals.
For a simple band the extension is straightfor-
ward. Before doing it the following remark
should, however, be made. Unlike one-dimen-
sional crystals which have, as a rule, a well-
defined band structure, three-dimensional crys-
tals may have only a few well-separated bands in
their energy spectrum. "Only such bands will
be considered in this Letter. For each simple
band its very existence is sufficient in order for
one to be able to define a band-center operator.
For composite bands, we shall use the symmetry
of the solid in the definition of the BC operator.

A simple band in a solid has a well-defined
one-band position operator r„„(k). In general,
the components of this vector do not commute
and we shall use its laminar part' r„„' '(k) in the
definition of the BC operator Q„„(K):

Q„„(K)= exp[iq„(k) K], (7)

where K is a reciprocal lattice vector and

q„(k) = r„„'~'(k)=i &/&k+X„„'~'(k), (8)

with X„„'~'(k)being the laminar part [rotX„„'~'(k)
=0] of the quantity X„„(k)[see Eq. (4) for its defi-
nition]. As in the one-dimensional case one can
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show that the operator (7) is a conserved quantity.
This follows immediately from the fact that the
radius-vector- minimal-uncertainty %annier
functions a„(r —R„) are the eigenfunctions of the
operator q„(k) with the spectrum R„+(X„„(k)),
where R„ is a Bravais lattice vector and (X„„(k))
is given in Eq. (1). Correspondingly, the eigen-
values of the BC operator (7) are the same for
all the Wannier functions a„(r —R„). This means
that also the Bloch function g„„(r)with the special
choice of phase (leading to the coordinate-mini-
mal-uncertainty Wannier function) is an eigen-
function of Q„„(K). The BC operator (7) com-
mutes therefore with the Hamiltonian and is a
conserved quantity. Its diagonal form is

Q „„(K)= exp(iq„K) with q„=(X„„(k)) (9)

and is a straightforward generalization of the one-
dimensional formula (5). When the crystal pos-
sesses no point symmetry there is no restriction
on (X „(k)) and the value of the band quasicoordi-
nate q„will depend on the particular form of the
potential U(r). However, when there is point
symmetry in addition to translations, the q„value
of the band will coincide with one of the symmetry
centers of the space group. Thus, one can check
by using formula (1) for q„ that for crystals of
the C,.' symmetry the band quasicoordinate can
assume eight different values: 0, & a, 2b, 2c,
2(a+b), 2(a+ c), 2(b+ c), 2(a+b+ c), where a, b,
and c are the unit vectors of the Bravais lattice.
This is in full agreement with the eight inequival. —

ent inversion centers for this group. ' ' %Ye have
here a very interesting result showing that from
the knowledge of the inversion symmetry centers
of the space group C,.' we can find the possible
values of q„and vice versa (if the q„'s are known
we have information on the symmetry centers of
the space group). This connection between the
symmetry centers of the space group and the pos-
sible eigenvalues of the BC operator also holds
for crystals with any space-group symmetry. It
should be stressed that in the definition (7), only
the existence of a simple band was used and no
assumption was made about the symmetry of the
crystal. Despite that, the latter information is
contained in the simple band and the eigenvalue
q„of the BC operator coincides with one of the
symmetry centers of the crystal. As in one-
dimensional crystals, the BC operator for a
simple band has the physical meaning of an oper-
ator for the symmetry centers of the crystal.

In a composite band there are f Bloch functions
(f & 1) P,„(r), s = 1,2, . . . ,f for each vector k in

Q „(K)= exp(iq, K), s = 1,. . . , 4. (12)

This procedure of defining a BC operator can be
applied to any composite band as long as it be-
longs to a given band representation. A detailed
description of such a procedure for a general
composite band will be given elsewhere. For the
particular band under discussion (the valence
band of Ge) it is easy to find the band quasico-
ordinates q, in (11)from symmetry arguments.
First, it is clear that q, =q, . This follows from
the fact that a, (r) is fully symmetric under the
elements of D,„with respect to the symmetry
center q, . In particular, (I~&a, &a, &a)a,(r) =a, (r).
By applying this relation to the integral (11)
which defines q, we have

q, = Ja, *(r)ra, (r)d'r = —q, +(&a, &a, &a). (13)

the Brillouin zone. Such a composite band is
usually said to have f branches. An f -branch
band has, in general, a complicated structure'
and there does not seem to be a simple way to
define for it a BC operator. However, in what
follows I show that if the branching of the band is
caused by symmetry or, in other words, if the

composite band belongs to an irreducible band
representation of the space group, ' then the defi-
nition of a band-center operator becomes quite
straightforward. Consider, for example, the
valence band of Ge with the diamond symmetry
group 0„'. This is a four-branch band which, as
can be shown belongs to the (q, 1)-band represen-
tation. '" What this means is that this band is
built on the following four orbitals:

a,(r) =a"'"(r), a, (r) = C,"a,(r),

a, (r) = C,'a, (r), a,(r) = C,'a, (r).
Here a" "(r) is a fully symmetric function (the
superscript "1"denotes this) of the group DM
with respect to the symmetry center' q, =(—,a,—Sa,
8a) and C,", C,', and C,' are rotations by m

around the axes x, y, and z correspondingly (with
respect to the origin of the crystal). By assum-
ing that the orbitals a, (r), s=1,2, 3, 4 in Eq. (10)
are the Wannier functions for the valence band of
Ge we can construct the quantities [see Eq. (1)]

q, =(X„(k))= Ja,*(r)ra, (r)d'r,

s =1, . . . , 4. (11)
The results of Ref. 8 and the formulas (7)-(9) can
now be used for each branch of the composite
band. Correspondingly, for the valence band of
Ge the eigenvalues of the band-center operator
will be
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From here, q, =q, =(&a, &a, &a). Similarly, from
the relations (10) and (11)we find q, = C,"q, =(-,'a,

1 1 i g I 1

=C, q, =(-8a, -&a, 8a). This result shows that
the values of the band quasicoordinates q„ for the
valence band of Ge coincide with the vectors of
the star for the symmetry center q, of the space
group 0„'. In proving this result no use was
made of the explicit form of the periodic po-
tential. What this means is that the band quasi-
coordinates q„ for any composite band of the
(c, 1) symmetry will reproduce the star of q, for
0„'. It can be checked that the values of q, in
Eq. (11)will reproduce the star of the symmetry
center for any of the irreducible band representa-
tions of the space group 0„'. This result can be
generalized to any composite band with giVen
symmetry of a solid belonging to any space group:
The eigenvalues of the BC operator will give the
symmetry centers of the space group of the solid
and vice versa (if the latter are given we also
know the possible eigenvalues of the BC operator).

In summary, it has been shown that for each
band in a solid one can define a band-center
operator which is a conserved quantity. Its eigen-
values are the average position of the electron in
different bands, and they also coincide with the
symmetry centers of the space group for the

particular solid.
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The Friedel sum rule for impurities is related to the Luttinger requirement that the
volume of the Fermi surface of a crystal is independent of interactions. As a consequence
important results derived by use of the Friedel sum rule, e.g. , the T —0 properties of
the Kondo problem, can be extended to periodic cases. Considered explicitly are the re-
markable consequences for Fermi surfaces and Fermi-liquid properties of periodic
Kondo and mixed-valence systems.

PACS numbers: 71.45.Gm, 72.15.Qm, 75.20.Hr

There are two well-known sum rules which re-
late properties of states at the Fermi energy p,

to the number of fermions, the Friedel sum rule'
on phase shifts at p, caused by an impurity and
the Luttinger sum rule' on the volume enclosed
by the Fermi surface in a perfect crystal. The
derivation by Luttinger showed that the sum

rule' is a rigorous result of the analytic proper-
ties of Fermi liquids, "including interactions
between fermions to all orders. The same tech-
niques were used by Langer and Ambegaokar~ to
provide a general proof of the Friedel sum rule.
In subsequent years Fermi-liquid theory includ-
ing the Friedel sum rule has been one of' the
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