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Garuccio and Selleri result. For the special case of
approximations via finite frequencies, the equivalence
of Proposition (3) is worked out by H. P. Stapp, Epist.
Lett. 36, 55 (1978). (My thanks to A. Shimony for call-
ing my attention to this reference. )

H. P. Stapp, Phys. Rev. D 3, 1303 (1971), and P.
Eberhard, Nuovo Cimento 8 38, 75 (1977), purport to
dispense with hidden variables. B. D*Espagnat, Phys.
Rev. D 18, 349 (1978), claims to do without determin-
ism ~
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theories with an infrared fixed point. The sign of G depends on the coefficients in the
renormalization-group P function.

PACS numbers: 04.20.Cv, 04.50.+h, 11.15.-q

Is Newton's gravitational constant G a funda-
mental parameter or is it calculable in terms of
other fundamental parameters~ In this paper I
would like to argue the latter view and to present
a calculation of G, unfortunately not in the real
world, but in a toy world, just to demonstrate
that G is indeed calculable.

The form of the non-Abelian gauge field E„„
=s„A„-e„A„-i[A„,A„] dictates that the gauge
potential A„must have dimension one regardless
of the dimension of space-time, and so the Yang-
Mills action I' must always have dimension four.
(It is tempting to suggest that this fact may be
connected to the actually observed dimension of
space-time. ) ln contrast, the Einstein-Hilbert
action R, being just the scalar curvature, always
has dimension two. In this sense, Yang-Mills
theory is matched perfectly to the observed four-
dimensional space-time while gravity is not.
More precisely, if we demand the fundamental
theory of the world to be scale invariant, Ein-
stein's theory is excluded. (Furthermore, in a
gauge-invariant theory without any fundamental
scalar fields, all terms proportional to R such
as p2R are also excluded. )

It is extremely attractive to impose scale in-
variance since in a scale-invariant theory with n

dimensionless couplings all dimensionless ratios
of dimensional physical parameters are calcula-
ble' in terms of n —1 dimensionless couplings.
(Some physicists harbor the ultimate ambition
that n will eventually be reduced to 1.) Newton's
gravitational constant G would then be calculable
in terms of a purely flat-space quantity deter-
mined by the other interactions. In this context,
a formula for G was derived independently by

Adler' and Zee' and reads

(16mG;„~) ' =(i/96) fd'xx'g( x')-
(the subscript "ind" denotes "induced" ) with
p(-x') -=(ET(x)T(0)),—(T),'. This formula ex-
presses G;„d in terms of a space-time integral
over the vacuum value of the time-ordered prod-
uct of the trace of the stress-energy tensor
T (x).

The philosophy and the physics behind the de-
rivation of Eq. (1) have been amply discussed in
the literature' ' and will not be elaborated here.
If this philosophy is correct, we would be in the
exciting position of being able to understand the
sign of the gravitational constant. ' The magni-
tude of G is merely set by the scale of dynamical
scale-invariance breaking.

Actually, the formula in Eq. (1) holds only when
the metric is not itself quantized; otherwise,
there are extra terms due to fluctuations in the
metric which have been worked out by Adler. '

' With the metric quantized, the scale-invariant
fundamental action of gravity would consist of a
linear combination of + R p ~ and + p yp

In this paper, I treat, for simplicity's sake,
the background metric as classical and content
myself with studying the formula in Eq. (1). l
must mention that this formula is defined only
with the understanding that it is to be evaluated
with the aid of dimensional regularization. By
dimensional considerations, one can see that the
expression in Eq. (1) has a quadratic short-dis-
tance divergence which is prescribed to be zero
by dimensional regularization. After perf orming
a Wick rotation to Euclidean space we write Eq.
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(1) as

(16~G;,d) '=-~ J d'xx'j(x'). (2)

If the strong, electromagnetic, and weak inter-
actions are described by a grand unified gauge
theory with massless fermions, the operator
T(x) is determined via the trace anomaly' to be

T =e'~e ~"[y/(1 -y)]~. (5)

The solution is fixed by the boundary condition,
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A crude calculation of G;„d taking into account
the short-distance ultraviolet region was given
in Ref. 3 and motivated the derivation of Eq. (1).
Unfortunately, we were led to conclude that the
sign of G;„d depends on the long-distance infrared
region, of which we are totally ignorant. There
was also a calculation' of G using a dilute instan-
ton-gas approximation, but again, because of our
ignorance of the long-distance physics, the in-
frared region was excluded by an artificial cutoff
on the instanton size. Thus, neither of these cal-
culations is conclusive as regards the sign of

G;„d. To include the infrared region, Adler has
outlined' a program based on numerical lattice
calculations.

In this paper, I remark that there is a class of
gauge theories in which the infrared region is
completely known —in fact, the function P may be
computed explicitly. These are gauge theories
with the property that in the expansion of the re-
normalization-group function P (g) = —~ g'(b, +b,g
+. . .) the coefficient b, is positive and small (so
that the theory is barely asymptotically free)
while the coefficient b, is negative. (Such theo-
ries are well known to exist; quantum chromody-
namics with sixteen quark triplets provides an ex-
ample. ") There is then an infrared-stable fixed
point given by g~' =- b,/b, By ch. oosing appro-
priately the gauge group and the fermion repre-
sentations, we can make g~' arbitrarily small.
The calculation given below is "exact" to the ex-
tent that g~' is small.

I define a dimensionless distance scale parame-
ter 7 =—p'x' with p' the renormalization scale
mass, and also, as usual, the running coupling
constant g(7') by

uT/T =-2dg(T)/p(g(T)).

It is convenient to introduce the notation n -=g,
&*=gq, y

=—&(7)/a*, and y —= 2/bon*. For n* suf-
ficiently small, this differential relation may be
integrated "exactly" to give

chosen by convenience to be n(1) =~n*. As is
usual in a scale-invariant theory, this choice is
completely arbitrary [as long as 0& a (1)& n *];
a different choice merely shifts p'. As expected,
y increases monotonically from 0 to 1 as 7 goes
from 0 to . For T - 0 we have the asymptotically
free behavior

y ylnlnT '
1 ~ + ~ ~ ~ ~

ln7 in~
(6)

16m G; „d 96 16

with the dimensionless integral

7 lT
K((u) = d~,„[y(1 -y)]'.

The constant C is positive. I have dimensionally
continued to space-time with dimension 2. In
Eq. (9) I have explicitly indicated how the powers
of T enter. I adopt the prescription' of not con-
tinuing the relation between' and ~ given in Eq.
(5). Dimensional regularization offers a prescrip-
tion to define the integral K(~).

I emphasize that my calculation is for a class
of model field theories which presumably do not
describe the real world. In particular Green's
functions behave as powers rather than e " at
large distances, thus indicating the absence of a
mass gap and confinement. These theories are
neither confining nor symmetry breaking. In a
realistic calr jlation we presumably would like
the theory, =. grand unified theory of the three
other interactions, to be in the symmetry-break-
ing Higgs phase.

It turns out to be easier to evaluate K by inte-
grating not over coordinate space but over the
running coupling constant y =& (T)/&*. Changing
integration variables we find

Z(cu) =ye "J dyy "(I.-y) +"e"
0

Here the parameter q —=y(e —1). It continues to
y when —2. It is convenient to use an inverse

In the infrared limit 7 - we have the character-
istic power-law" approach to the fixed point

y =1 —e$e ~~z ~~& 1 -e T

For g* small enough, the two-point function
(V'E'(x)E'(0)), —(F'),' is well approximated by its
free-field-theory value C/(x')'. The overall
numerical constant C has been given by Adler. '

Putting all this together we find that the gravi-
tational constant is given by
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coupling constant 1+x —= 1/y; then

J(q) =y 'e "Is(&u)
m""

(1+m)'

So far, we have not done anything except change
variables, often enough to perhaps confuse the
casual reader. But, no matter how often we
change variables, the integral K(~) is not well
defined for ~ =2. A prescription is needed. The
ultraviolet divergence in Eq. (9), of the form
f,jd~/~')(im) ', has been merely translated into
the nasty exponential blowup in Eqs. (10) and (11).
Incidentally, were it not for this ultraviolet diver-
gence, one might have naively concluded from
Eq. (10) that G;„z is always negative. " However,
as is well known, dimensional regularization can
turn apparently positive integrals into negative
integrals. '4

The function J(q) is defined by its integral rep-
resentation for —2&@&0. [The lower limit q
& —2 is an infrared limit and is in some sense an
artif ice of dimensional continuation. Consulting
Eq. (7) we see that the interaction always makes
the infrared region in Eq. (9) more convergent. ]
Our prescription to evaluate J(j) for q =y & 0 is
as follows. Analytically continue J(q) from the
region —2& g &0. This is easily done. We make
the change of variable x —=

l q iso for g negative
and obtain

independent of the regularization scheme" used.
We will now compute L(q =y +ie, y & 0). After

integrating by parts three times (since the whole
calculation is only valid if y is large we drop all
surface terms) we find

lmL (y +is) = —~~y ye ~,

ReL(y+ie) = —~y~I dt ln~t —1~0(t), (14)

with

+Sy(y+1)t'-y t']e y'.

(2p) y & e &[in y +0(1)]~ (16)

We see that Rel is negligible compared to ImL
for large y. Incidentally, we see that the major
contribution in Eq. (14) comes from neither the
infrared nor the ultraviolet region.

Finally, tracing through our steps, we see that
the sign of Newton's constant is given by the sign
of

This form is suitable for numerical integration.
For y very large, "which is when the calcula-

tion is valid anyway, this integral could be done

by steepest descent. Each term in the integrand
has the form of a function, lnit —1I t ~e &', which
is sharply peaked about t - 1, multiplied by t"
(with n =-2, —1,0, 1). After a tedious integration,
we find that, for large y,

(12)

This analytic continuation (unique, of course)
shows that J(q) is perfectly well defined for Re@
& 0 except for a cut along the positive real axis.
We define, for y positive real,

J "g""'
(y) = z[J(y +ie) +J(y —ie)] =ReJ(y+ie)

in order to obtain real physical quantities.
I follow here the prescription given by Adler. '

It is well known that within dimensional regulari-
zation, to any finite perturbative order, one only
encounters poles in the complex & plane. Here,
however, the trace anomaly incorporates effects
to all orders in perturbation theory. If the func-
tion P is also continued, "one encounters a cut on
the real axis to the right of ~ =2 and an infinite
number of poles to the left of =2. Fpr a more
detailed analysis of this point, see Adler. ' I ar-
gue that, unless the general argument given by
Adler ' that G is finite and calculable fails for
some reason, the computed value of G should be

1 v C
16~Gp, ' 192 4n ~' (16)

Note that the scale mass p is physical by virtue
of the choice ~ (1) =n*/2 and may be determined
in principle by measuring Green's functions in
this toy world. In the real world, we must do an
independent calculation of some other physical
quantity, such as the proton mass or the string
constant, in terms of p.

It is a pleasure to thank Lowell Brown for very
helpful discussions. I would like to thank Steve
Adler for comments and Roger Dashen for a dis-

sin(y —1)& lmL —cos(y —1)& ReI

and so

sgnG =(- 1)~~~, (17)

where [x] is the largest integer less than or equal
to x.

Incidentally, the magnitude of Newton's con-
stant turns out to be (for y & integer)
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cussion of infrared-stable theories. Finally, I
am grateful to Stephen Ellis for checking my
computation. The work represented here was
supported in part by the U. S. Department of En-
ergy under Contract No. DE-AC06-76ER01388.
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