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Et is shown that the following statements about a quantum correlation experiment are
mutually equivalent. (1) There is a deterministic hidden-variables model for the experi-
ment. (2) There is a factorizable, stochastic model. (3) There is one joint distribution
for all observables of the experiment, returning the experimental probabilities. (4) There
are well-defined, compatible joint distributions for all pairs and triples of commuting
and noncommuting observables. (5) The Bell inequalities hold.

PACS numbers: 03.50.Bz, 02.50.+ s

I consider correlation experiments (for instance,
on pairs of dissociation fragments of a metasta-
ble molecule') of the general type described by
Clauser and Horne. ' This involves distinct
measurements in space-time regions R, and R,
(that, ideally, would be spacelike separated),
measuring noncommuting observables A, 4' in
R, and B, B' in R, (for instance, measuring spin
components along skew directions in the plane
transverse to the "path" of the particles). These
observables are two valued, say with values +1.
The probabilities of tke experiment are the ob-
served distributions for each of the four observa-
bles, plus the observed distributions for each of
.the four compatible pairs: AB, AB', A'B, 2nd A'B'.
We can write these as P(A), P(B), P(AB), P(A'B'),
etc. ; where P( ~ ~ ~ ) denotes the probability that
the enclosed observables each take the value +1,
and where the "complement" of an observable
S takes the value +1 if the observable S takes the
value -1.

A detn ministic hidden-variables model for
such an experiment consists of a set A of hidden
variables (the "complete" state specifications),
a normalized probability density p(A) defined on

A, and response functions (giving the A. -deter-

P(ST) = JS(h.)T(~)p(~)dX, (2)

where S(A.) = 1 if S(A.) = 1, a,nd S(A.) = 0 if S(h.) = -1;
similarly for T. ((In (1) S ranges over the four
observables of the experiment plus their comple-
ments; and when, for example, we put X on the
left-hand side, then we put [ I -A(h) ] on the
right-hand side. In (2) the pairs ST range over
the compatible pairs of observables and their
complements, under the same convention. )

The first result here is to show that the exis-
tence of a deterministic hidden-variables model
is strictly equivalent to the existence of a joint
probability distribution function P(AA' BB' ) for
the four observables of the experiment, one that
returns tke probabilities of tke experiment as
maxginals. To see this, note that, if we have a
deterministic hidden-variables model, then the

mined responses to the measurement) A(h. ), A'(h. ),
B(A), and B'(A.), each defined on A with values
*1, and satisfying (where the integration is over
A),

P(S) = JS(Z)p(h. )dX,
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equation

P(AA'BB') = J A(X)A'(Z)B(Z)B'(g) p(y)dg

defines a joint distribution for the four observa-
bles (again where S on the left-hand side goes
along with [1-Z(A)] on the right-hand side]. It
then follows from (1) and (2) that the marginals
yield the probabilities of the experiment. For
example, the marginals P(AA'BB') +P(AA'BB')
+p(AA'BB') +P(AA'BB') produce J~A(A)B(A)
x p(p)dg =p(AB), by (2). Conversely, if we are
given a distribution P(AA' BB') for the four ob-
servables, one whose marginals return the single
and double experimental probabilities, then there
is a simple, canonical way to define a determin-
istic hidden-variables model. Namely, let A

consist of all sixteen quadruples A, = {a„a„a„a,),
where a,. = +1. Introduce the response functions
as A(A) = a„A '(A) = a„B(A)= a„and B'(A) = a~.
Then define the density p(A) as follows: p(a„a„
a„a,) = P(A P, ' B,B,' ), where we write S; = S if a,.
=1, and S,. =S if a,. = -1. One can readily verify
that p is normalized (all sixteen terms sum to 1)
and that {1)and (2) hold [because the marginals
of P( ~ ~ ) were assumed to yield the probabilities
of the experiment].

Thus the idea of deterministic hidden variables
is just the idea of a suitable joint probability func-
tion. ' If there were such hidden variables (i.e.,
if there were such a joint distribution) then there
would be distributions for triples of observables
A, B,B' satisfying P(ABB') = JA(A, )B(A)B'(A)
x p(A)dA. that return the correct experimental
probabilities, P(A), P(B), P(B'), P(AB), and
P(AB'), as marginals. Similarly, there would

be a distribution P(A' BB') for the triple A', B, B'
also returning the corresponding experimental

probabilities. Moreover, each of these triple
distributions would give rise to one and the same
distribution for the noncommuting pair B, B' as
P(BB') = J B(A.)B'(A.)p(A. )dh. Thus, inevitably,
the existence of deterministic hidden variables
violates the quantum mechanical condition that
joint distributions are well defined only for com-
muting observables. I now show that precisely
such violations of the restrictive joint distribu-
tion structure of quantum mechanics, imposed
by the existence of nontrivial commutation rela-
tions, are entirely equivalent to the supposition
of deterministic hidden variables.

Proposition (1) N—ecessary and sufficient for
the existence of a deterministic hidden-variables
model is the existence of a distribution P(ABB')
for the triple A, B, B' and a distribution P(A'BB')
for the triple A', B, B' whose marginals yield the
experimental probabilities and which, in addition,
also yield one and the same joint distribution
P(BB') for the noncommuting pair B, B'.

I have already shown necessity above. To show

sufficiency I will simply show how to build a dis-
tribution P{AA'BB') from the triples P(ABB'),
P(A'BB'), and the common joint P(BB'); one that
returns them again as marginals. The canonical
construction, then, produces the required deter-
ministic hidden-variables model. If we set
P(AA 'BB') = (P(ABB ')P(A 'BB')J /[P(BB') J, then
it is straightforward to verify that this is a prop-
er joint distribution, with the required marginals.
[U P(BB ) = 0, set P{AA BB ) = 0.]

The joint distributions for noncommuting ob-
servables, that are equivalent to the existence of
deterministic hidden variables [according to
Proposition (1)J, can now be put to work to de-
rive restrictions on the probabilities of a correla-
tion experiment. Using the marginals we have

P(ABB') = P(AA ' BB') +P(AA ' BB' ) (P(A ' B) +P(A ' B' ) = P(A ' B) +P(B ') —P(A ' B')

P(ABB') =P(XA'BB') +P(AX'BB') ~P(A'B') +P(A'B) =P(A'B') +P(B) —P(A'B) .
Then, by straightforward calculation,

0 ~P(ABB') =P(A) -P(AB) —P(AB') +P(ABB'),

0 -P(ABB') =1-P(A) —P(B) -P(B') +P(AB) +P(AB') +P(ABB') .
Using the inequality {4)for P(ABB') in (6), and (5) for P(ABB') in (7) yields

-1 -P(AB) +P(AB') +P(A' B') —P(A'B) —P(A) —P(B') ~ 0.

(4)

(5)

(6)

(8)

Similar calculations for the other terms in the distributions for A, B, B' and for A', B, B' turn out three
more pairs of inequalities. These can be obtained from (8) by first interchanging A with A', then B
with B', and finally both A with A' and B with B' together. I shall refer to all eight inequalities thus

obtained, collectively, as the Bell/CH inequalities. I have just shown that every deterministic hidden-

variables model. restricts the probabilites of the experiment so as to satisfy these eight inequalities.
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This is well known. 4 Surprisingly, the converse
is also true.

Proposition (2).—Necessary and also sufficient
for the existence of a deterministic hidden-varia-
bles model is that the Bell/CH inequalities hold
for the probabilities of the experiment. ' To
establish this it remains to show how to build a
deterministic model, given the Bell inequalities.
With use of Proposition (1), it will be sufficient
to define distributions P(ABB') and P(A'BB')
that yield the same distribution P(BB'), along
with the probabilities of the experiment. For
this purpose let P be the minimum of the follow-
ing (nonnegative) terms: P(B), P(B'), P(AB)
+P(B') —P(AB'), P(AB') +P(B) -P(AB), P(A'B)
+P(B') P(A'-B'), and P(A'B') +P(B) P(A'B-).
Then we will set P(BB') = P and define the rest of
the distribution for B, B' by P(BB') =P(B) —P,
P(BB') =P(B') —P, and P(BB') =1 P(B) --P(B')
+ P. One can check that this is well defined, by
the choice of P. Then let o. be the minimum of P,
P —[P(A) +P(B) +P(B') P(AB—') —P(AB) —1],
P(AB), and P(AB'). Similarly, let cr' be the
minimum of P, P-[P(A') +P(B) +P(B') -P(A'B')
-P(A'B) -1], P(A'B), and P(A'B'). The Bell/
CH inequalities guarantee that u and n' are non-
negative. Then we have that 0 ~ o. -P &1 and 0
-u'-P-1. We now set P(ABB') =o. and fill out
the remainder of the distribution for A, B, B' as
follows: P(AB&') =P(AB) —n, P(ABB') =p(AB')
—o.', P(ABB') =P(A) -P(AB) -P(AB') +o.,
P(XBB') = P —e, P(XBB') =P(B) -P(AB) —(P —o),
P(ABB') =P(B') P(AB') --(P —a), and P(A BB')
= 1 -P(A) -P(B) P(B') +P-(AB) +P(AB')+(P —n).
In just the same way we set P(A'BB') = o. ' and use
the same prescription (replacing A by A', and n

by n') to fill out the distribution for A', B,B'.
Then we must verify that each right-hand term
so defined is nonnegative, and no larger than the
already defined joint probability for any two of
the three observables that occur to the left-hand
side of it. That all these inequalities hold follows
from the definitions of o., n', and P, and from
the assumption that the Bell/CH inequalities hold,
together with the usual probabilistic connections
governing the experimental probabilities (e.g. ,
that P(AB) -min [P(A), P(B)] or that P(A) +P(B)
-1+P(AB), etc.].' One can easily check that
P(ABB') +P(XBB')=P(A'BB') +P(X'BB') =/3, and
that the other terms in the distribution of B, B'
come out the same whether calculated from the
triple A. , B, B' or from the triple A', B,B'. Simi-
larly, the experimental distributions for the ob-
servables and compatible pairs also come out

correctly. Thus the conditions of Proposition (1)
for a deterministic hidden-variables model are
satisfied if the Bell/CH inequalities hold.

I move, finally, to consider stochastic hidden-
nzxiables models. Here we relax the require-
ment that each hidden variable A. determines a
unique measurement response (either +1 or -1),
in favor of the idea that A. only determines the
probability of a response. So we replace the re-
sponse functions of determinism by the probabil-
ity functions P(S, A, ) and I (ST, A.), where P(S, A)

gives the probability that observable S, measured
in state A., yields value +1; and P(ST, A) gives
that probability that both observables yield +1,
if measured in A.. [Here S can be replaced by
any of A, A', B, and B' in P(S, A) and ST can be
replaced by any commuting pair AB, A'B, AB',
or A'B' in P(ST, A), allowing also for comple-
ments. ] Then we require that

P(S) = f P(S, A.)p(Z)A, (9)

P(ST) = J,P(ST, ~)p(~)d~. (10)

If, in addition, the following condition holds

P(ST, ) ) =P(S, Z)P(T, X),

then the stochastic model is said to be factor
i@able. ' [Here I use the convention that P(&', A)

=1-P(S,X), and P(ST, A) =P(T, A) -P(ST, A),

P(ST, X) =P(S, A) -P(ST, A). ]
Clearly, every deterministic hidden-variables

model is a factorizable stochastic model, with
all probabilities at A. either 0 or 1. Simply set
P(S, ~) =1 if S(~) =1 and P(S, ~) = 0 Z S(~) = -1,
and then let P(ST, A) =P(S, A)p(T, A) as in (11).
Then trivially, (1) and (2) imply (9) and (10).
Although the converse (that every factorizable
stochastic model is deterministic) is not true,
something close to it is.'

Proposition (3).—There exists a factorizable
stochastic hidden-variables model for a correla-
tion experiment if and only if there exists a deter-
ministic hidden-vari'ables model for the experi-
ment. One can use a result in the literature to
prove this. Clauser and Horne (Ref. 2) show that
any factorizable stochastic model satisfies the
Bell/CH inequalities, and hence by Proposition
(2), it only produces probabilities for a determi-
nistic model. But we can also establish this di-
rectly, just by noting that

P(AA 'BB')

= )~p(A, X)P(A', A)P(B, A)P(B', Z) p(A. )dh (12)
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defines a distribution returning the probabilities
of the experiment as marginals, provided (9)-(ll)
hold.

Proposition (3) shows that, despite appearances,
no significant generality is achieved in moving
from deterministic hidden variables to stochastic
ones, if factorizability is required of the latter:
An experiment can be modeled in one way if and

only if it can be modeled in the other. Similarly,
Proposition (2) shows that, despite appearances,
no significant generality is achieved by those de-
rivations of the Bell/CH inequalities that dis-
pense with explicit reference to hidden variables
and/or determinism': The assumptions of such
derivations imply the existence of deterministic
hidden variables for any experiment to which they
apply. Finally, I believe that Proposition (1)

— "onjoined with the other two shows what
hidden variables and the Bell inequalities are
all about; namely, imposing requirements to
make well defined precisely those probability
distributions for noncommuting observables
whose rejection is the very essence of quantum
mechanics.

I acknowledge grant support from the National
Science Foundation, and also the encouragement
of Patrick Suppes.

'An experiment of this sort is suggested in Sect. 7.2
of the excellent review of the Bell literature by J. F.
Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881
(1978). A detailed design of the experiment is given in
T. K. Lo and A. Shimony, Phys. Rev. A 23, 3003 (1981).
L. S. Bartell, Phys. Rev. D 22, 1352 (1980), shows how
to formulate a double-slit experiment in these terms.

J. F. Clauser and M. A. Horne, Phys. Rev. D 10,
526 (1974) . We allow below both for the detection of +1
responses and —1 responses, as in Lo and Shimony
(Ref. 1), an allowance to which the Clauser and Horne
scheme is readily adapted.

Exactly similar reasoning shows that this conclusion
is valid in the more general setting where any number
of incompatible observables are measured in It

~ and/or
in Rq. Hence the probabilistic assumptions required to
show the (in principle) incompatibil. ity of deterministic
hidden variables with quantum interference phenomena,
in the manner of J. Bub, The Inte&Pretation of Quantum
Mechanics (Reidel, Dordrecht, 1974), pp. 76-78, are
prope rly available.

Using the fact P(S) = 2((S) +1) and P(ST) = ~((Sl')
+ (S)+ (T) + 1), we can rewrite (8) as —2 & (AB) + (AB')
+ (A'B') —(A'B) & 2. In this form the inequalities were
first derived by J. F. Clauser, M. A. Horne, A. Shi-
mony, and R. A. Holt, Phys. Rev. Lett. 23, 888 (1969),
generalizing a special case discovered by J. S. Bell,

Physics (N.Y.) 1, 195 (1964). Since the form of expec-
tation values depends essentially on the particular
values of the observables (here + 1), whereas (8) would
result whatever the two values, I prefer to work with
the purely probabilistic form (8) . These inequalities
were derived, for the stochastic case, by Clauser and
Horne (Ref. 2). The derivation in the text is new.

We can apply Proposition (2) to a hidden-variables
model restricted to those particles that enter the col-
limating apertures of the analyzers. Then, ignoring
spurious coincidence counts, the experimental errors
are just the errors of detection. Let 0«& 1 be the
probability of detection for a single particle (assumed
the same for each analyzer-detector assembly) . If, for
perfect efficiency, quantum mechanics predicts that
P(AB) +P(AB') +P(A'8') —P(A'B) =S and P(A) =P(8') = ~,
then (assuming random errors) inequality (8) would hold
for the experimental probabilities just in the case —1
«&-«0. In particular for ~ ~1 (i.e., a theoretical"
violation of the Bell/CH inequalities) there would be a
hidden. -variables model, according to Proposition (2),
provided 0&a &1/S. In the photon correlation experi-
ments (see Clauser and Shimony, Ref. 1, p. 1907 ff)
S=~(1+v2) =1.207. Hence for any «0.829 Proposition
(2) yields a deterministic hidden-variables model of
the experiment. In the proposed Lo and Shimony mole-
cular experiment (Ref. 1) ~=1.140; hence any «0.877
would be compatible with hidden variables. (This bound

slightly improves the 0.9 of these authors. ) No experi-
ments to date have detector efficiencies exceeding
these bounds. Rather, in the cited references a variety
of experimental inefficiencies are used to correct the
theoretical predictions which, thus corrected, are then
judged as violations of the Bell/CH inequalities.

To help sift through the inequalities it may be useful
to have two typical cases pointed out. In the case, for
instance, o.= P =P (A'B') +P (B') P(/I'B), then-P (ABB')
&0 reduces to the right-hand side of (8). In the case
P =P(A'8') +P(8) —P(A'B) and & &P, F'(AB), and P(AB');
then»0 reduces to the left-hand side of (8).

I follow the terminology of A. Garuccio and F. Sel-
leri, Lett. Nuovo Cimento 23, 555 (1978). The condi-
tion (ll), of stochastic independence at each &, is more
often called locality. " But since it is not yet settled
whether (11) is, actually, either necessary or sufficient
for local causality (in the sense of no superluminary
causal signals) I prefer not to pre-judge the issue by
using a persuasive terminology. See F. Selleri and
G. Tarozzi, Lett. Nuovo Cimento 29, 553 (1980).
Geoffrey Hellman, Stochastic Einstein- Locality and

the Bell Theorems" (to be published), also gives a
sensitive discussion of the controversial issues. See
also the exchange between A. Fine, P. Suppes, and
A. Shimony in PSA: 1980," edited by R. Giere (Philos-
ophy of Science Association, to be published), Vol. 2.

Garuccio and Selleri, Ref. 4, announce the equiva-
lence of deterministic and factorizable stochastic mod-

But that turns out to be misleading, for they only
show that a certain class of linear inequalities holds in
the one case if and only if it holds in the other. Propo-
sition (3) below is different, although it implies the

294



VOLUME 48, +UMBER 5 PHYSICAL REVIFW LETTERS 1 FEBRUARY 1982

Garuccio and Selleri result. For the special case of
approximations via finite frequencies, the equivalence
of Proposition (3) is worked out by H. P. Stapp, Epist.
Lett. 36, 55 (1978). (My thanks to A. Shimony for call-
ing my attention to this reference. )

H. P. Stapp, Phys. Rev. D 3, 1303 (1971), and P.
Eberhard, Nuovo Cimento 8 38, 75 (1977), purport to
dispense with hidden variables. B. D*Espagnat, Phys.
Rev. D 18, 349 (1978), claims to do without determin-
ism ~
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Newton's gravitational constant G is calculated in a class of scale-invariant gauge
theories with an infrared fixed point. The sign of G depends on the coefficients in the
renormalization-group P function.
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Is Newton's gravitational constant G a funda-
mental parameter or is it calculable in terms of
other fundamental parameters~ In this paper I
would like to argue the latter view and to present
a calculation of G, unfortunately not in the real
world, but in a toy world, just to demonstrate
that G is indeed calculable.

The form of the non-Abelian gauge field E„„
=s„A„-e„A„-i[A„,A„] dictates that the gauge
potential A„must have dimension one regardless
of the dimension of space-time, and so the Yang-
Mills action I' must always have dimension four.
(It is tempting to suggest that this fact may be
connected to the actually observed dimension of
space-time. ) ln contrast, the Einstein-Hilbert
action R, being just the scalar curvature, always
has dimension two. In this sense, Yang-Mills
theory is matched perfectly to the observed four-
dimensional space-time while gravity is not.
More precisely, if we demand the fundamental
theory of the world to be scale invariant, Ein-
stein's theory is excluded. (Furthermore, in a
gauge-invariant theory without any fundamental
scalar fields, all terms proportional to R such
as p2R are also excluded. )

It is extremely attractive to impose scale in-
variance since in a scale-invariant theory with n

dimensionless couplings all dimensionless ratios
of dimensional physical parameters are calcula-
ble' in terms of n —1 dimensionless couplings.
(Some physicists harbor the ultimate ambition
that n will eventually be reduced to 1.) Newton's
gravitational constant G would then be calculable
in terms of a purely flat-space quantity deter-
mined by the other interactions. In this context,
a formula for G was derived independently by

Adler' and Zee' and reads

(16mG;„~) ' =(i/96) fd'xx'g( x')-
(the subscript "ind" denotes "induced" ) with
p(-x') -=(ET(x)T(0)),—(T),'. This formula ex-
presses G;„d in terms of a space-time integral
over the vacuum value of the time-ordered prod-
uct of the trace of the stress-energy tensor
T (x).

The philosophy and the physics behind the de-
rivation of Eq. (1) have been amply discussed in
the literature' ' and will not be elaborated here.
If this philosophy is correct, we would be in the
exciting position of being able to understand the
sign of the gravitational constant. ' The magni-
tude of G is merely set by the scale of dynamical
scale-invariance breaking.

Actually, the formula in Eq. (1) holds only when
the metric is not itself quantized; otherwise,
there are extra terms due to fluctuations in the
metric which have been worked out by Adler. '

' With the metric quantized, the scale-invariant
fundamental action of gravity would consist of a
linear combination of + R p ~ and + p yp

In this paper, I treat, for simplicity's sake,
the background metric as classical and content
myself with studying the formula in Eq. (1). l
must mention that this formula is defined only
with the understanding that it is to be evaluated
with the aid of dimensional regularization. By
dimensional considerations, one can see that the
expression in Eq. (1) has a quadratic short-dis-
tance divergence which is prescribed to be zero
by dimensional regularization. After perf orming
a Wick rotation to Euclidean space we write Eq.
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