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Theory of the Sylitting of Diseommensnrations in the Charge-Density-Wave State of 2H-TaSe2

I'. B. Littlewood and T. M. Rice'"
Bell Laboratories, Murray Hi7l, Nero Jersey 07974

(Received 28 October 1981)

The commensurate charge-density-wave state of 2H-Tase& can have hexagonal (H) or
orthorhombic (&) symmetry. With use of a Landau theory it is shown that near the bound-

ary between H and 0 states a discommensuration splits into two H-0 interfaces and there-
by greatly lowers its energy. This leads to a large suppression of the incommensurate-
commensurate transition temperature and a reentrant commensurate state under pressure.

PACS numbers: 64.70.Kb, 81.30.Hd

Recent experimental studies have shown that
the commensurate charge-density-wave (CDW)
state of 2H-TaSe, has orthorhomhic (0) rather
than hexagonal (FI) symmetry. ' This symmetry
occurs if the origin of the CDW, i.e. , the posi-
tion around which the CDW's have hexagonal
point symmetry within a layer, is at a Se site
(or even on the line joining Se sites) rather than
at a Ta site which would give an H state. ' The
former choice is favored when there is a compe-
tition between the terms in the Landau free en-
ergy of a single layer arising from the overlap of
the three CDW's and from commensurability. If
the two states, H and 0, have nearly equal ener-
gy, there are interesting consequences: (i) A
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FIG. 1. (a) Geometry of a single layer of 2H-TaSe2
projected onto the z =4 plane. Ta atoms occupy A sites
and Se atoms either B or C sites on alternate layers.
(b) A plot of h(x) as a function of temperature shows the
splitting of a DC into two A-0 interfaces close to the
0-H transition.
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FIG. 2. (a) Discommensuration energy EDc(t) and

spacing 2xo/$ of H Ointerfaces w-ithin a DC (f = 0.8,
e =1.0, d»e, r)=w, P =n/8+0. 2). The dashed line is
a scaled g' dependence of a DC far from the H-0
boundary. (b) Phase diagram t vs f (pressure) from
the Landau free-energy expansion (P =~/3+0. 2, d»e,
e =1.0, p=n) for several values of q. The 0-H boundary
is marked by the dashed line and the ~-I boundary by
the dotted line for the value of q =0.7 only.
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discommensuration (DC) splits into two H-0 in-
terfaces, greatly reducing its energy, (ii) this en-
ergy reduction of a DC can drive the transition to
an incommensurate state, (iii) a small increase
in interlayer coupling can favor H over 0, and
(iv) the incommensurate stripe state (S) is fav-
ored over the hexagonal incommensurate state
(I) in a larger temperature interval. In this Let-
ter we show that a choice of parameters in the
Landau theory favoring 0 but with H nearby in en-

~

ergy at zero pressure gives rise to the conse-
quences (i)-(iv), in agreement with experimental
observations at zero pressure, "~ and to the re-
entrant pressure dependence of the commensu-
rate state."

The Landau free energy of the CDW state in 2P-
TaSe, was written in its general form by Jacobs
and Walker. '' In reduced units and with ampli-
tude variation ignored, it is, to third order in
the phase-dependent terms,

F = f d'r (3q'+ 3 [(~23 h' -q]'+ @h"+2g" -d( cos(38+y)
—eg[2 cos(39 —3g + y) cos3h + cos(38+ 6g+ y)]+f [2 cos(28 —2g+ n) + cos(28+ 4g+n)]},

where the phases of individual CDW order parameters with wave vectors &G,. (see Fig. 1) in the layers
(+) are

9,"=+9+g(x)+h(x); 9,'=~ (8+ 2g); 9,'=*9~g -h. (2)

This choice is the most general which preserves inversion symmetry between layers. The coeffi-
cients d, e, and f are real and positive and y, X, and n are the arguments of the complex interlayer,
commensurability, and interlayer terms in the Jacobs-Walker free energy. In simplifying the gradi-
ent terms we consider only spatial variation in the x direction (see Fig. 1) and assume equal elastic
coefficients

~~
and i to a Q vector. Furthermore we neglect the spatial dependence of 8 which is valid

when d»e the form of our results is generally insensitive to the value of d. The amplitude of the or-
der parameter g is taken to be (1 —f)"' where t =T/T, is the reduced temperature.

First we consider the commensurate states with g' =h' =0 and, for the moment, f = 0. Minimizing
the energy gives

F =-g[d +9e +6ed cos(y —y+2mv/3)]' (3)

with the phasesg=my/9, h =nv/3 (m, n integer and m+n even). The solutions m=0, 3, 6 areH states
with origins at Ta sites (A in Fig. 1). Those with m =2, 5, 8 or 1,4, 7 are 0 states with origins at Se
sites (B) or Se "holes" (C), respectively. Although all three solutions have hexagonal symmetry about
the origin in a single layer, only in the m = 0 case does the three-dimensional crystal have H symmetry
(P6,/mme) with an inversion center of the crystal midway between Ta atoms in adjacent layers For.
m = 1 or 2 the crystal symmetry is orthorhombic with space group Cmcm (Ref. 2) and in (2) we have
chosen the orthorhombic axes in the layers to be

~~
and & to —,5,. This space group is one of two possi-

ble space groups deduced by Fung et al. from electron microscopy.
To obtain the form of a, DC we take the functional derivatives of (1) leading to

h"- ~e( cos(P —3g) sin3h = 0,

g"-2eg[sin(P+6g+ y) —sin(P —3g+y) cos3h]+2f cos(q+g) sin3g= 0,

(4)

(5)

where p=38+ y and q=28+n. Again withthe neglect of interlayer coupling (f =0), a solution to (4) and
(5) is h(x) = 3g (x) which corresponds to displacing the origin along the line AC (Fig. 1). Integrating with
the boundary condition lim„„h (pc) = 0 gives

h"= &eg[3cosP —2 cos(P+2h) —cos(P -4h)]. (6)

This can be solved exactly when P =z/3, which is at the boundary where the H(m =0) and 0(m =2) states
have equal energy, to give

~
sin(h~)/sin(h~+z/3)~ = exp(x/&) (7)

with $ = &(3eg) "'. This solution describes an interface between an H state (h =g=0) at x- —~ and an
0 state (h = —z/3, g = -v/9) as x-+~. In this interface the origin is displaced continuously from A to
B.
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There is a similar solution to (4) and (5) with h, (x) = —2m/3+3gz(x), which describes an interface be-
tween an 0 state at B and the H state with origin at A' (h = —2g/3, g =0), of the form

~
sin(h, +~/3)/sin(h, +2v/3)~ = exp(x/(). (8)

Combining one each of (7) and (8) produces a single DC in the H state (ABA') or the 0 state (BA'B').
Near theH-0 boundary (P=p/3) a single DC consists of two well-separatedH-0 interfaces and has a
small energy [1.83(eg)"'].

We now consider the effect of the interlayer coupling (f) term. This term is independent of P in (1)
and therefore more important at high temperatures. Further, we expect that f will increase rapidly
with pressure as the layers are pressed together. The lowest-energy commensurate states still have
H or 0 symmetry. ' The II solutions have the same form discussed above but the 0 states are modified
to h =a&/3, g =+g, with lim&, g, =z/9. An increase of the interlayer term f can stabilize the H state
relative to the 0 state. For example, in the limit d»3e and P=71/3 the energy difference is

F„-Fo=R3eg(P- /v3)+ f[3cosq-v 3cos(q+ v/18)].

Since 0 is fixed only modulo 2v/3 by the d term, g can be chosen in the range 2w/3&g &4n/3. Thus for
P —m/3 small and positive the phase boundary between H and 0 states is f = 4e((to„)(P —n/3)/~ cosy~.

To study the transition to the incommensurate state we consider the energy EDc of a single DC in-
cluding the f term. We have made a variational calculation using a trial function which is a superposi-
tion of two interface solutions (7) separated by 2x,. For a DC in the H state we take

h(x)=- 2m/3+h (x+x,)+h (x-x,), g(x)=(3g,/m)[h (x+x,)-h (x-x,)]
and for a DC in the 0 state

h (x) = —p/3+ h (x + x,) +h (x —x,), g (x) = g, —(3gJ'v) [h, (x'+x, ) —h, (x -x,)].

(10)

We determine x, by minimizing the energy and find that x, diverges as t-t»—the 0-II transition tem-
perature. EDc goes through a minimum at this point [see Fig. 2(a)). Away from the 0-H boundary Eoc
varies as ('" shown as the dashed line in Fig. 2(a).

This minimum has important consequences for the transition from the commensurate to the incom-
mensurate state. This phase boundary is determined by equating EDc to the driving term linear in q
in (1). This gives

& n(ctf) =(4~/3W3e (12)

The solutions of (12) are shown in Fig. 2(b) for several values of q. As the boundary from 0 to S is
crossed the stripe state initially is a series of 0-to-0 discommensurations (BAB in Fig. 1). As t in-
creases these 0-to-0 DC split into 0-H interfaces [see Fig. 1(b)] and at a higher t, crossing the dashed
line in Fig. 2(b), recombine to give H-to HDC (ABA-). We believe that this behavior has been ob-
served."Because the OS boundary in Fig. 2(b) is steep the region of 0-to-0 DC is narrow and con-
siderable hysteresis can be expected.

At higher temperatures, outside the DC regime, we can estimate the energies of the incommensu-
rate states from a perturbation expansion in the e term. The simple I state with hexagonal symmetry
of the CDW has phases 0,.'=q,. ~ r*0 and energy

Fi = -d(+ 3f cos(28+o. ) —1.5e(„
where 8 = —(y+2nn)/3 and the last term results from the second harmonic which is small at high tem-
peratures. ' The S state has one commensurate and two incommensurate Q vectors with separate phas-
es which allows one to minimize the energy of the d and e terms to give

F~
= —,'q' —dg —e (g+ g,) +f [cos(2y, +o ) + 2 cos(2cp, +o )], (14)

where p, +2', = —(y+2n7t) and 3p, +y =2m'. The relative stability of'the S and I states depends on a
competition between elastic and commensurability energies, similar to that at the commensurate-in-
commensurate transition. However, it is relatively insensitive to the f term and to the choice of y
and y unlike the boundary to the commensurate state which has a large dip near the OH phase boundary
as shown in Fig. 2(b).
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In conclusion, our model, based on a splitting of a DC into two H-0 interfaces, leads to a large sup-
pression of the incommensurate-commensurate transition temperature and a reentrant commensurate
state under pressure. An independent study of the Landau free energy' by Walker 3nd Jacobs" has re-
cently given the same explanation of the orthorhombic commensurate (0) state. However, these au-
thors neglected interlayer coupling and did not consider the commensurate-to-incommensurate transi-
tion. The phase diagram me obtain is qualitatively similar to the experimental results of McWhan
et al. '
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Electronic Attenuation of Longitudinal Acoustic Phonons in Tungsten

M. J. G. Lee, J. M. Perz, and J. &lotnick
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The conduction-electron-limited mean free path of long-wavelength longitudinal
phonons in turgsten is calculated on the basis of an empirical deformation-potential
description of the electron-phonon interaction. Qood agreement with acoustic attenu-
ation data of Jones and Rayne demonstrates the importance of the inclusion of renor-
malization effects when the deformation potential is constructed from the strain re-
sponse of the Fermi surface. Lifetime broadening of the phonon spectrum is discussed.

PACS numbers: 63.20.Kr, 63.20.Dj

The mean free path of long-wavelength phonons
in normal-metal single crystals of high purity at
low temperature is limited by scattering by the
conduction electrons. The phonon mean free
path A can be studied experimentally either by
measuring the ultrasonic attenuation coefficient
n = A ', or by measuring the lifetime broadening
of the phonon dispers ion curve, 2 I"~ = A 'v „
where v, is the speed of sound. Ultrasonic ex-
periments show that, for longitudinal phonons of
wave vector q, the product qA approaches a con-
stant value in the limit of very long electron
mean free path I, i.e., when q/ »l.

In this limit, the phonon mean free path can be
readily calculated from the golden rule of time-
dependent perturbation theory. The mean free
path A of a longitudinal phonon, whose wave vec-
tor q is sufficiently small that transitions be-
tween different sheets of the Fermi surface can
be neglected, is given by

A-'=(V/2") g p, (m-, -„-,/hi'-, )'ds,

where Bit & ~ is the matrix element of the elec-
tron-phonon interaction between Bloch states of
wave vectors k and k', V is the volume of the
crystal, and vq is the Fermi velocity renormal-
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