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The local character, in poloidal mode-number space, of the resonant nonlinear inter-
action of drift waves with ions in a sheared magnetic field permits an analytical determi-
nation of the spectrum. Important processes underlying the stabilization are energy cas-
cade and transfer, respectively, in close" (ks' =kg} and distant" (ks'a~ =1/ksa~) inter-
actions. The spectral index n =4 of the high-mode-number tail is independent of the ex-
citation mechanism.

PACS numbers: 52.35.Kt, 52.35.Mw

The nature of the mechanism by which drift
waves saturate has been a subject of much con-
troversy in recent fusion research. ' ' Already
in 1969 Sagdeev and Galeev' considered the non-
linear scattering off ions (nonlinear ion-Landau
"damping") in shearless plasmas. Later Dupree
and Tetreault' and Krommes' presented a re-
normalized version of ion Compton scattering.
We develop the idea further for more realistic
fusion environments with magnetic shear. The
approach is that of weak turbulence theory, but
we retain the scattering contribution of the shield-

ing cloud. There are essential differences from
previous works. First, the random-phase ap-
proximation is now inadequate in the radial direc-
tion since it postulates the statistical indepen-
dence of the Fourier components. Second, in
contrast to the shearless case for which &~/&k„

go, the condition for nonlinear scattering to be
efficient, namely that the beat frequency of two
natural modes is small in comparison to the in-
dividual frequencies, implies for the poloidal
mode numbers of the interacting waves either
ks' —-ks or ks'a, =1/ksa, (in the limit T;/T, «1,
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the drift-wave frequency is ~ = -[k e a, /(1+k&'a, ')]
&& c, /L„; L„ is the length scale of the density
gradient, c, =(T, /m, ) ' is the sound speed, and

a, =c,/0;]. We find in agreement with former
calculations" that "close interaction" (k e' =k e)
yields an energy cascade towards longer wave-
lengths if k ea, &I; if 4 qa, & I, the cascade proc-
ess is towards shorter wavelengths. The differ-
ent behavior in these two spectral regions is re-
lated to the group velocity changing sign for A ea,
=1; clearly the group velocity is an important
parameter since the scattering concerns only
nearby frequencies. The important new result
is, however, that "distant interaction" transfers

I

energy from the long (k ea, &1) to the correspond-
ingly short (k~'a, &1) wavelengths which permits
a stationary solution of the wave equation. It is
interesting to note that this process:hus far
overlooked- —naturally plays the role formerly
assigned by Sagdeev and Galeev to wave decay. '

The wave kinetic equation is derived by the
standard methods of weak turbulence except that
the random-phase average in the radial mode
numbers is replaced by a selection rule based on

the fast radial variation of the linear eigenfunc-
tions: These are assumed to have the Pearlstein-
Berk eikonal structure' and the method of station-
ary phase in applied. The result is'

k

„) &v(k, cu&lk", ~"lk, & z) IRu I';

I., is the shear length. nI, is the Fourier transform of the density fluctuation with the normalization

(2)dr! n, (r —r,„)I'= g lrnl dk„ fnz I'
s m

(r, is the position of the rational surface of toroidal and poloidal mode numbers l and m; note that the
number of rational surfa. ees in an interval Ar is Im!ArA/rIL, I). P&R&, =(nz), ~ is the "nonadiabatic"
electron response. ~"=~q —~z, k" =k -k'. The term

M -=(k&&k'. n) Jdvs (k)J (k')F,"g-„g-„„[((u-„-(u,. +7)g-, -k —k'],
where gq =(&vq -k

~~
v ~~)

' and n =B/B, represents the Compton contribution to the scattering process and

agrees with the result of Krommes' in the weak turbulence limit. The term v'/e,

v:—kxk' nf dv Jo(k)Z~(k') J~(k")Ii, g&, [(u —tu,. ~*)g~ —k ——k'],
represents the shielding contribution. [We have

used the relation v(k", &u"
I k, cu z) = -v(k, &u& I

k", ~")
in writing Eq. (1).] Finally the dielectric function
(with adiabatic electrons) is

e(k, u)) —= 1+(T;/T, ) —f dv J,'(k)F;"(~ —(u;q*)gq.

[We do not consider the effect of the tempera-
ture gradient and J,(k) -=J,(k~v~/0, ).]

To proceed, we first take profit of the local
character of the interaction to expand kg'= (k e')
+ &k e' and any function thereof where &k 8' = &5ke'(~")

and (kg')=either ke (close interaction) or 1/k q

x a, ' (distant interaction). We teen introduce the

hypothesis that the radial spectrum can be taken
over from linear theory to eliminate the integral
character. of Eq. (1) in k„. Finally we evaluate
integrals of the form fd~" &d "e"((k"),&u") which
are left over by a residue method. " We have
been careful to exclude the contribution from
the poles of e '(k", ~") on the real axis which

!
correspond to absorption in the'ee-nave scatter-
ing processes discussed elsewhere. """ In
this way Eq. (1) is reduced to the differential
form

where the function f (y) is related to the one-
dimensional poloidal spectrum of the density
fluctuation via IRI'= fdkq!RI ~ ',

The variable y =—k e'a, '; the operators L, =y B/By
+(2 —y)/(1 —y) and L, -=(2-y)' B/By +(2 —y)/(1
-y). A singularity appears at y =1 because the
transformation Gke' = eke'(~") and the Jaeobian
d Bkq'/des" have been approximated by linear forms
which procedure is invalid in the vicinity of y =1
(where B~&&,.&/B(ke') vanishes). The singularity
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reflects in an approximate way the fact that the
number of quantum energy levels involved in the
interaction becomes infinite there and is by no
means related to a failure of the weak-turbulence
expansion. The source term is

(y) -=—
~( .) (~~, —~ul (1, ). y

' ' (5)

where ~=24~'T'~R! L„!/~, ', 7'=- T, /T„
= sign(1 -y), and L„ is the density gradient length
scale. (x') is related to the fourth power of the
cutoff radial mode number set by linear ion-

Landau damping; we estimate (x') ~' =1/250.
The linear growth rate is given by y7(linear)
=y~ z!&uk!!L„/L !. In Eq. (5) yk represents the
total damping rate (linear and nonlinear) in those
regions of k e space where the turbulence is not
excited; where this is the case, the noise level
is proportional to the Cherenkov and bremsstrah-
lung radiation and inversely proportional to yk. "

The general solution of Eq. (3) is

f(y) =( I ( '))[( —')f +—( +—,',)],

2y —4f -=-—,R=-y'+3y -1= 5R"

i,(y)=-,(y ') =f, R, i. 1. . . [y' "(4y'-1)~(y') -y"'(4/y'-1) &(y' ')]

and

i.(y) -=i.(y ') ( I) I/2
dy' 1. . .[y' '~(y') -y "&(y' ')].

We have defined 8(y) =- ji(y) —y(y). The solu-
tion is subject to the constraints yk =—0 wherever
f&0 and yq &0 wherever f=0. The additional
freedom introduced by the retention of the damp-
ing rate yk enables us to exclude unphysical nega-
tive solutions. To avoid any discontinuous behav-
ior we require f(1) =0; to exclude unphysical
(homogeneous) solutions we impose ! Bf/ey!, = 0.
Physically this choice of boundary conditions re-
sults from the reversal of the energy flow at y =1.
To show that the roots y, and y, =y, ' of the poly-

nomial R are not singular points of the solution
suppose first that f(y) &0 both to the right of y,
and to the left of y,. y(y) should then be identical-
ly zero in both neighborhoods. But since lim(y
-y, ,) f, = ~, f(y) will take on opposite signs in
these neighborhoods (because of the sign factor
0) which contradicts the premise. Hence f=—0
and y &0 either around y, or around y, . f= 0 in a-
given range a &y & b is the requested (integral)
equation for the damping rate in this range. The
solution is

y(y) =-2y (1+y) (y -2)[ 2oo+ho(y ')] +yz(y) -y3(y -2)2y (y "~),

where

I.(y) -=
(y'-1)

(y')~' (1+y')'

In the complementary domain a ')y &6 ', the
function f reduces to the simple form

f=-(o/«~'))[ l~. +h.(y)](1-y)ly', (12)

where o., is a matching constant. Equations (10)
and (12) demonstrate the regularity of the solu-
tion at the roots y» y, of R = 0.

To illustrate the theory we have calculated the
spectrum, the turbulence level, and the anomal-
ous transport for a concrete excitation model.
We assume

~&(y) = »y/(I +y)' —1 (13)

which fairly well describes the universal instabil-

ity: The substracted part represents the effect
of shear; the numerical factor 2D= n! L, /L„! '~'-
&&(m, /m, )~'In(A/X, ) where the logarithmic term
= 2.5." [The (non)existence of this instability is
a complicated story. Personally we lean to a
view broadly similar to that adopted by Hirshman
and Molvig. ' In the worst case (13) will still be
a proper mathematical model. We consider n as
a fitting parameter. ]

The solution corresponding to (13) where D= 5

is displayed in Fig. 1; for comparison we have
also shown the result obtained when distant inter-
action is not taken into account. The following
conclusions emer ge:

(1) The region of suprathermal fluctuations do
not coincide with those of linear instability.

(2) The energy source or sink available at high
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FIG. l. Electric field energy density lelq -f vs
normalized mode number y =@ca~. Dotted line is the
result obtained with close interaction only. Continuous
line is with both close and distant interactions taken
into account.
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mode numbers has very little influence upon the
spectrum. This statement can be inferred by
comparing the weight factors of the contributions
from yi(y) and yi(y ') in Eqs. (8) and (9). It has
been verified numerically using (13) for y (1,
but yz(y) =0 for y & l.

(3) The poloidal density spectrum, Eq. (4), be-
haves asymptotically as k s

' (for y &y*& 1, see
Fig. 1). This behavior, which stems from the
integral h, (y) approaching a. constant at large y's,
is universal, i.e., independent of the instability
model, and in good agreement with results ob-
tained on the Microtor tokamak, "where a spec-
tral index 3.5 was measured.

(4) While 75'/c of the squared density fluctuation
arises from the long-wavelength modes (k ~,&1),
the high mode numbers contribute for 85 to the
diffusion. This result is interesting since the ex-
perimental level of fluctuations measured in the
tokamak at Fontenay-aux-Roses" and in some
other machines at the long-wavelength end of the
spectrum (the only one often accessible by micro-
wave probing) falls short, by a factor 5-10, of
explaining the convective energy losses calcu-
lated from the power balance equation.

(5) Rough agreement is obtained both concern-
ing the energy confinement time and the turbu-
lence level for the Princeton Large Torus experi-
ment described in Ref. 16, if the growth model
(13) is used with the fitting parameter a = 2-4.
In contrast simultaneous agreement on these pa-
rameters cannot be reached if distant interaction
is not taken into consideration.

(6) The tubulence level

is smaller than that obtained in Refs. 2 and 4 by
the ratio IL„ I /I I., I (and a numerical factor
smaller than unity).

(7) The microscopic expression of the equivalent
diffusion coefficient roughly scales as y, —T, ' '/
I, ' 'qR J' (the shear length L, = qR; q —= safety
factor; 2= current density). Under the assumption
of Ohmic heating the scaling y, - J'/NT, ' ' re-
sults from power balance. Eliminating J yields

g, —1/(NT, qRm, .)' ' which is not very different
from admitted scaling laws. Note also that T,
-Jn(qRm, . '/N)' (o. =-plasma radius).

(8) The present theory cannot account for the
observed spectral width in frequency because of
the neglect of incoherent nonlinear wave emis-

sionn
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