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The Lagrangian path integral for the hydrogen atom is calculated exactly by rescaling
paths and performing the Kustaanheimo-Stiefel transformation in each short-time inte-
gral.
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Despite the unquestionable success of Feyn-
man's formulation of quantum mechanics, the
path integral for the hydrogen atom has remained
to be treated exactly. There are some earlier
attempts to obtain the exact results via semiclas-
sical approximations" or to find a partial re-
sult via exact calculations. ' Recently an impor-
tant procedure has been proposed by Duru and
Kleinert for solving exactly the path integral for
the Coulomb problem. The proposed procedure
consists of two main steps; the reparametriza-
tion of paths in terms of a new "time, " and the
change of variables by the Kustaanheimo-Stiefel
(KS) transformation. ' The KS transformation is
known to reduce the Kepler motion in three di-
mensions into a four-dimensional harmonic oscil-
lation in both classical and quantum mechanics. "
Following this procedure, Duru and Kleinert have
formally converted the Hamiltonian path integral
for the hydrogen atom into that for an oscillator
which is exactly solvable. However, they have
performed no actual path integration to confirm
any part of the procedure. Although their calcu-
lation is inspiring, its superficial nature has in-
curred some skepticism. '

In fact, there are questions in applying such a
nonlinear canonical transformation as the KS
transformation to a Hamiltonian path integral in
a formal manner. In general, a Hamiltonian path
integral is not invariant under a nonlinear canoni-
cal transformation. '" Therefore it is important
to see if the KS transformation performed in each
short-time integral would give rise to the de-
sired global change of variables without bringing
up any additional effect. For a short-time inte-
gral, on the other hand, there is ambiguity in
stipulating the local transformation of the canon-
ical momentum insofar as the Hamiltonian
scheme is adopted. However, since the KS trans-
formation is a point transformation, it is not es-

sential to deal with the Hamiltonian path integral.
The ambiguity associated with the momentum
transformation can simply be avoided by starting
with the Lagrangian path integral.

The purpose of this paper is to derive the
Green's function of the hydrogen atom via a path
integral in a way free from ambiguity. We follow
the general recipe proposed by Duru and Klein-
ert. 4 However, we solve the problem explicitly
by (i) using the Lagrangian path integral instead
of the Hamiltonian path integral, and (ii) applying
the KS transformation in a modified version to
Cartesian variables in each short-time integral
with the midpoint expansion, rather than per-
forming an ambiguous formal change of path-
integral variables.

We start with the propagator expressed by the
Lagrangian path integral, t"

K(x",x';7) =f exp((i/ti)f i L(x,x)dt)S'x(t), (1)

with the attractive Coulomb Lagrangian, L(x,x)
= —,'mx'+e'/r, where w = t" —t' and r = ~x~. The
Green's function for the Coulomb problem, G(x",
x';E), can be obtained as a Fourier transform of
(1). Unfortunately, no one knows how to carry
out the path integration (1) directly on the O(3)
basis. Here, we attempt to calculate it on the
O(4) basis.

First, following Duru and Kleinert, 4 we re-
parametrize paths by means of a new "time, "
s(t)= J'dt/r(t) Namely, we re.write (1) as

K (x",x'; ~)

=J, b(r —f, r(s)ds)K(x", x';o)r" do.

Correspondingly, the Green's function takes the
form

G (x",x',Z)

= fexp[(iE, /tt) f'r(s)ds]K(x", x';o)r" do. ('3)
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Writing (3) in the form,

G (x",x',E)= fexp(ie'0/+)Pz(x", x', U)do,

we express Pz in (4) on the time-division basis,

m 3NI2 N-1

~0 7TZ 2=1
(5)

x' =+A" (u)u' (a =1,2, 3), (6)

where S(x~) =(m/2~r, )(b x&)'+ eEr, and e = (t,
—t, ,)/r, , r& being the midpoint value of r, to be
def ined later.

Next, in order to reduce each short-time in-
tegral in (5) into the Gaussian form, we consider
the change of variables from x' = (x,y, z) in R' to
Cartesian variables u' = (u', u', u', u') in R' by
the KS transformation, '

! dinates themselves. Applying (6) for each j, we
obtain the KS transformation for the intervals,

4

ax,.' =2+A" (u, Qu (a=1,2, 3), (8)

where u, '=2(u, '+u, ,') and &u =u,.' —u, ,'. We
also observe that although Q,A4' (u)u'= 0 the
quantity defined by

where
4

g, = 2Q A."(u, )au, '
b=l

(9)

—Q
2

u4
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—Q 2

uI

Q
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Q

—Q

Q

—Q I

u4

Q

(7)

N I/2 pm Zm 2 —- I /2.' ~(2. a. , '"' m--, '
@=I

satisfies the condition AA =rI or Q,', (u')' =r.
As is obvious, the matrix A(u) of (7) maps only
a. subspace of R ~u ontoR'~x. A constraint
such as u'-u'+ u'u'=0 is needed to specify the
subspace. Undoubtedly such a constraint will
complicate path integration in the new variables.
What we are presently concerned with is, how-

!
ever, the change of intervals rather than coor-

does not vanish in general. When u,. is con-
strained, $, is a function of bx, '. If no constraint
is assumed, it behaves as an independent vari-
able, and the matrix A(u) in (8) and (9) maps
(b u', Au', 2 u', b,u') onto (b x,Ay, b.z, $). This is
in contrast to the situation thatA(u) of (7) maps
(u', u', u', u') onto (x,y, z, 0). Therefore, if the
three-dimensional path integral (5) can be con-
verted into an equivalent four-dimensional form,
we may lift the constraint and try the set of trans-
formations (8) and (9), which we call the modi-
fied KS transformation, in changing variables.

In fact by inserting into (5) the following idem
factor,

(10)

we can simply convert (5) without altering its physical contents into the four-dimensional form,

2N N
N" I

Pz(x",x';v) =lim
2

.
@

r„r„' exp
@

QS(x, ) (r, 'd'x& d$, )d$~
2'TT ZIZ& /=1

with

S(x;)= (m/2er, )[(ax;)'+ g, ']+eEr, . (12)

(13)

Now the modified KS transfromation appears to be given a place to work. At this point, however, it is
crucial to define the midpoint value of r,. by r, =g', , (u, ')'=- u,.',. so as to assure the property, A(u,.)A(u,.)
=r, I. With th. is, the modified KS transformation yields (bx,.)'+$,.2=4rj(~, )' and 8(x, g)/s(u), . =24r,.~.
Thus we can write (11) a.s

Pz(x",x';v) =2 ' fK(u", u';v)r" 'd(",
where

232

2mK(u", u';0) = lim
VT ZIZZ

iN 2m
exp —Q (au, )'+ eEu, ' (d'u, ).

2=1 J=l
(14)
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The last path integral (14) is nothing but the propagator for an isotropic oscillator of mass M=4m and
frequency e = (-E/2m)' ' in R, which can be evaluated exactly in the usual manner,

K(u", u'; U) =F'(v) exp(- nF'(0)[(u' '+ u" ') cos(uo —2u' u"]),
with F(c') = (M co/2mÃ sin&us)' '.

By reducing the Coulomb problem to the oscil-
lator problem with the help of the modified KS
transformation, we have completed the path in-
tegration. Yet, we have to calculate the remain-
ing $ integral in (13). As it should be, (11)goes
back to (5) if all. $ integrations are carried out.
Actually, in obtaining (15), the integrations over
all f, but g" must have been done with the u in- sin(8/2) cos[(n + P)/2]
tegrations in (14). Therefore, the integration re- „2 sin(8/2) sin[(o. + P)/2]
maining in (13) is the final elimination process of cos(8/2) cos[(n+p)/2]
the additional degree of freedom introduced for cos(8/2) sin[(n+ P)/2]
making use of the modified KS transformation.
In other words, the $ integration in (13) projects
the propagator of an oscillator in R' into the path
integral for the Coulomb problem in R'. It is im-

portant that the Coulomb propagator is by no
means equivalent to the propagator of an oscil-
lator. The $ projection of the oscillator path in-
tegral is the Coulomb path integral.

To carry out the 6 integration in (13) explicitly,
we employ the polar coordinate representation, "

where e is an additional angular variable (0 n
&4m). Certainly, u'=u u =r, and the constraint,
which we have removed, implies o. =O. It is also
straightforward to show that &$/8 n =r and

u' ~ g" =(r'r ")"'[sinTB' sin~8" cos~(n" —n'+P" —P')+cosY'8'cos~B" cos 2(a' —o"+y" y')].
Noticing that —2m «a & 2m while —~ &$ &~, and utilizing the above results together with the formulas"

exp(z cosy) = Q e' ~I (z),

I,((z'+z" +2zz' cosy)' ')= Q e'"~I (z)I„(z'),
Sc~&4

we integrate (13) to obtain

P (x«, x', &y) =2 ~(2w)F~(o) exp[-nF'(a)(x'+r") cos&uc]I,(2''(r'r")' 'cos(&y)), (2o)

where cosy = cosB'cosB" + sinB'sinB" cos(p" —p'). Finally, substituting (20) into (4) and setting ~ =@k/
2m = i(E/2m)' ' yields the Green's function for the Coulomb problem,

G (r ",8",Q ",r', 8', Q';E) = (4w) 'O' I exp(ie'0'/R) csch'(Sko/2m) exp[ik(r'+r") coth(hkv/2m)l

x I,(- 2ik(x'r")'~' cos(&y) csch(kko/2m)) dc (21)

which is equivalent to various known integral forms. ""
In an earlier paper, "it has been shown that the partial-wave expansion of the propagator is often ad-

vantageous. Here we find the partial-wave decomposition of the Green's function particularly useful.
Writing (21) as

G(r"8 "Q",r'8'P', E) = Q (2l +1)G,(x",v';E)P, (cosy),
l=p

(22)

and using the beautiful formula"

~5 (2l +1)J»„(z)P,(cosy) =zJ,(z cos~y),
l=p

(23)
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we obtain

G (r" r' E) =(8v) '(r 'r") " k exp
&

csch
2

& exp ik(r'+r") coth
2 J„+, 2k(r'r")"'csch der (24)

Fortunately, the formula

j~ e ~'cschq exp[~(x'-y) cothq] Jz„(gy) '2cschq)dq =, ,», M~ „(x)W ~ „(y) (26)

reduces the radial Green's function (24) into a closed form, "
G, (r",r';E) = I'(p+l +1)[8wkkr'r" (2 l+ 1)!] 'M~ „

where p =ime'Il'k =i(me'/2A'E)' '. It is a simple
matter to symmetrize (26). By making an ana-
lytical continuation in E space, we can find both
the discrete and continuous eigenfunctions. The
discrete energy spectrum arises from the poles
of the I function in (26); that is, p+l+1= —n„
(n,„=0,1,2, . . . ) results in E„=—me'/2h'n' where
n =n„+l+1. A more detailed discussion will be
given elsewhere.
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