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The influence of three-wave interaction on stability of ballooning modes is determined
in the presence of magnetic shear and a fully toroidal large-aspect-ratio field geometry.
From the ideal two-fluid equations, possibilities for nonlinear instability of the explosive
type are established.
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Stability properties of ballooning modes are of
great importance in determining the maximum
achievable plasma P in a tokamak reactor. ' ' How-
ever, except for some preliminary attempts, ' '
only linear theories have been reported, leaving
unanswered important questions on nonlinear in-
teraction. Recently, such questions have ac-
quired new urgency in view of the prediction' of
explosively unstable drift-Alfven waves in a low-
P, low-ion-temperature plasma with slab field
geometry, without shear. Although ballooning
modes belong to the same general class of waves,
the toroidal structure of the magnetic field geome-
try is essential for their existence. Furthermore,
the effect of shear in linear theory " prompts
an investigation of the influence of shear on non-
linear stability as well. Also, it is of interest to
develop a theory capable of covering the second
stability region, ' whereas even for the boundary
of the first stability region, finite-P effects have
to be taken into account systematically. Finally,
with regard to present-day tokamak operations,
the assumption of low ion temperature has to be
removed.

The above considerations led us to describe
three-wave interactions between ballooning modes
in high-P tokamak configurations. The ideal two-
fluid model is adopted, with finite-Larmor-radius
effects being taken into account only in an orbit-
averaged sense, "under the assumption p;/L~«1» ~/cu„, where L, is the perpendicular gradi-
ent scale length of the eigenfunction. Since, in-
trinsically, the curvature and parallel wave vec-
tors are of the same order, curvature effects are
incorporated in a systematic manner, without
recourse to a pseudogravitation. Only high mode
numbers are considered (n"'» 1), since these
are believed to be characteristic for the worst
instabilities. ' '

Up to and including first order in the polariza-
tion and finite-Larmor-radius drift velocities,

where P is the sum of ion and electron kinetic
pressure. Since the parallel gradient operator is
invertible for ballooning modes, (3) can be satis-
field by the sensate

5A =- aV ~5iP, (4)

with the choice

ct =exp(- ~f dpPd lnP/dp).

Here, terms of order ek, ~/k& were neglected [&

P k „a 1/(k~a) a/R B~/B, a =minor radius,
R =major radius, B~ =poloidal field, P =plasma
P, k

~~ ~ = parallel and perpendicular wave num-
bersf. Also, in evaluating &P, the combined ef-
fect on 6&jj of finite Larmor radius and plasma
P, due to a difference between fluid and field dis-
placement, has been neglected.

Within the context of the present field represen-

the ion equation of motion

n; m; dv, /dt = —V ~ II, +en; E +en; v, xl3/c.

is solved for the component of the velocity perpen-
dicular to the unperturbed magnetic field, in
terms of the parallel velocity and the electromag-
netic fields. In the electron equation of motion,
polarization and gyroviscous drifts are neglected
(p,/L, = 0= ~/to„), i.e. ,

0=-'VP, -en, E en, v, xB-/c. (2)

In (1) and (2), n, , m, , and v;, j =i, e, are the
ion and electron particle number densities, mass,
and fluid velocities, respectively; -e is the
electron charge, c is the velocity of light in vacuo;
11; = jd'v vvf, is the ion stress tensor, and P, is
the electron pressure.

The representation of electromagnetic fields,
E and B, by potentials is simplified by the as-
sumption of high mode number and low frequency
(I~I'/k. 2V,2«1), since then

4&5P +BI
~l

= 0
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tation, combination of the aforementioned expres-
sions for the perpendicular ion and electron veloc-
ities with the induction law yields one equation be-
tween the electrostatic potential ~p and the poten-
tial 5$ introduced in (4). Under the assumption
that finite ion inertia and Larmor radius effects
only result in small differences between the ion
and electron pressure perturbations, an estimate
can be obtained for &p, from pressure balance
and the electron equation of motion. If one as-

sumes that k,a++1~~
I V ~

e~~ I/k~~t the dominant

part of &p is seen to equal

5@=— e,
~

~ (VxnV 5$)+V~,o V5$/c=0,
8&en

since Vq,
=—(cVP, /enB ) xe~~ t with e~~=B /& .

Hence, 5+ e+5$/c and can be neglected in the
expressions for the perpendicular fields. There-
by we arrive at the following closed equation for
the potential 5C' = (n&u/tc)5p (6 =V', b.,=—V~'):

[&'/st'+ (9/9 t)V~ V- VA' V ii'] b i54' +I A V
~~ (e ~~

~ &V &54') —2&v„.(e „xA) ~ V (V„'.V)54

= —(8 /8 t) (5VR +5 V„;) ~ V4154 —411V„2/c~(S /at)V ~ (J ii B1/&o). (5)

Here, ~V~ and DV„; are the perturbed cross-field
and ion diamagnetic drift velocities, ~ =e!I-&eII is
the curvature vector, V~ is the unperturbed Alf-
ven velocity, and (d„. and V„, are the unperturbed
ion cyclotron frequency and electron diamagnetic
drift velocity, respectively. On the left-hand side
of (5) the first terms represent linear inertial,
finite-Larmor-radius, and line-bending effects,
while the last term on the left corresponds to the
pseudogravitational term in some of the more
phenomenological treatments. On the right-hand
side, the first term represents the nonlinear in-
teraction due to perturbations in the drift veloci-
ties, as discussed before for the case when &V«
«5V~ (low ion temperature) in a slab model with-
out shear and low P,' whereas the second term
mainly represents the nonlinear effects of field

!curvature and shear (kink term). Equation (5)
can be used as the starting point for nonlinear
stability analysis of ballooning modes about any
high-P tokamak equilibrium.

As a specific application we consider the case
of axisymmetric concentric flux surfaces (first
stability region and slightly beyond). We employ
the quasimode representation'

5C' =5F(N, X) exp[tn[& —f vh', 0)dX'5, (6)

where g is the flux coordinate, y and t; are the
poloidal and toroidal angles, respectively, and v

df/5y =—along a field line. In (6) t the amplitude
~I" is slowly varying compared with the phase for
large toroidal mode number. The linear part of

(5) agrees with previously obtained results, "
after substitution of (6):

&u(~ —n&u„)[1+(sy —& sing)']5E+k, 'VA'(S/SX)([1+(sy —n sing)']] e5E/Sy

+D[cosy + (sy —n sing) sinx]5E =0 ~

Here, & =~„+i@is the complex eigenfrequency,
(d+ is the ion diamagnetic drift frequency, s
=d 1nq/d 1n1' is the global shear, k, = 1/qR is the
wave number of the background, + is the modula-
tion of the shear (v =v, —2~sv, cosy), and D
—= —~dP/pdr. A more sophisticated representa-
tion, the ballooning formalism, ' by which perio-
dicity in toroidal angle is ensured, yields exactly
the same equation (7), but with the domain of y
extended to the entire real axis.

An analytical dispersion equation can be ob-
tained from the linear eigenvalue equation (7) in
several ways, e.g. , by expanding the eigenfunc-
tions in a series of Hermite functions, ' or, as
carried out earlier' for drift-Alfven waves in a
slab, by Fourier transformation and subsequent
Taylor expansion of the derivatives with respect
to the poloidal mode number. That is, with p

I —= f dye' X5F, we have

Pm' Y(Pm+1 —9'm-1) t 'Pm" +m+1 + @m-1 —21m.

As a result of the poloidal variation of the driving
force, all modes are linearly coupled to lower
and upper sidebands,

for all rn, with, under neglect of terms ~u',
a =(1+2s2)[&tt(&u -n&1t„)-m k, VA~]+2Ds ~nDt

b ' =—(~ —s)D —&u(u —num)s'+ (m'+ m)k, 2V„2s'.

By use of the equation for a „p „,the side-
bands can be expressed in terms of p, and p
By use of the equation for a, ,p, » p, , can be
expressed in terms of p, , and p „,after which
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the equation for a „p „can be used to elimi-
nate the newly appeared p „,and so on. There-
by an expression for p is obtained in terms of
arbitrarily distant sidebands, which rapidly con-
verges as the distance towards these sidebands is
increased. Hence, the sidebands can be expressed

)

in terms of the primary mode, and a dispersion
equation is obtained:

+s. +s. +
m m+1 m I +m m m+1 +m 1 +Vm m m 1 ~m+1 p

where the coupling coefficients y
' have been de-

fined as

m+1 m +2

~m+ 1&m~2

bm~1 bm~2 bm~2 bm+3
Z

+ ~ ~ ~

+m ~ 1~m+ 2(+m+ 2+m s 2 ~m s 2 ~m +2

-1
b 'b+1 *2

4

+m+1+m+ 2

After an additional expansion in D/(4k, 'V„'), the resulting dispersion relation reads
2 1/2

~ = Yn(d~+ &n'+~2+(I —1) k,'V„-y„» +G (s)

where s =—d 1nq/d inr is the global shear and where, e.g. , for m =1 (worst mode in view of minimal line
bending) the function G (s) is

3

G (s) = Ds(y D —2).', )y„) —y s (1 —2s)+y tt s4 —R(s)I,
c A

2s
R(s) =—D 2 [2(1+2s )k,2VA2+y D(1 —2s)]

1 +2S
) D2-y' 2Ds -y») 1+2s'—,[D(T—s) +2k, 'V„'s']

4k, 'V ' i 1+2s'
D2 4

Evidently, for small shear, destabilization prevails; for large shear, its overall effect is stabilizing.
For example, the linear driving force is increased by ~ of its value for s =~, reduced by —,

' for s =1
and exactly annihilated for s =~. This behavior is in agreement with previous results obtained differ-
ently. ' '

Returning to the nonlinear problem, we assume a harmonic time dependence in the nonlinear part of

(5), which we may rewrite (using Maxwell's equations) as

(
9 2

, +—y„,-' v-VA'v))' a,c —VA'v)) e)) .~v,c —2~„. ei)x~ ~ v Q„, ~ vc

+n1
* 4" ~ V~~C'"+ " V e)) V& 4 ' ~ e)) V e)) ~ VC" + & —2,
1 1 2

where (1-2) denotes the previous terms with mode indices 1 and 2 interchanged. Here &+ =- t V„~ V('),

where V'" operates on the phase, i.e., it gives a term c n'". In order to study the nonlinear evolution
in time, let us consider the Fourier components p of p ' with respect to the slow variation in poloidal
angle.

First considering the case when
)

Bine�„

/Bt
)
«v we may then drop the second-order time derivative

in (9) if operating on the slowly varying amplitude. For the interaction of three modes satisfying the
resonance conditions, i.e., n =e, +n„m = m, + m„Ace =~ —~, —~2 ~„j=1, 2, we then obtain three
coupled equations of the form

BC/Bt= c»C, 42 exp(+it).&ut),

where

c„=i —,—-='=—d„(n, A2 —n, z, )((u, + a)2)(2(u —n(u „) ',. c y(g, y)

(10)

with

d» ——(n, ' —n, ')(1 —m, m2 V„'/J 2B'&u, &u2) + n) n2(d „(n2/&e) —n, /tu2)
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Here, —y(g, y) is defined by the leading-order
part of ~~6I" =-n'y5F. In deriving (10) we have
neglected the spatial variation of y in the nonlin-
ear terms. The factors ~& are defined as the
logarithmic derivative of 4 with respect to
radius. They originate from the operation V on
the slowly varying amplitude of C(j). Clearly this
variation has to be taken into account, since
otherwise the nonlinear terms vanish. Further-
more, in the case of marginal stability, the fre-
quency is seen to satisfy &D/6~=0 (zero-energy
wave), where D is the dispersion function [cf.
(8)]. In this case the second-order time deriva-
tive of the amplitude cannot be neglected. We
then arrive at a system of coupled mode equations
where the second-order derivative enters in one
equation, and only the first in the others. For a
coupling of the zero-energy wave with two waves
of the same energy sign we then have an explo-
sively unstable system. " lf the driving force is
increased even further (linearly unstable case),
the first time derivative will appear with an im-
aginary coefficient, together with the second time
derivative, leading to a situation in which linear
and explosively nonlinear growth enforce each
other. We thus find several possibilities for non-
linear instability of ballooning modes.

Present address: Los Alamos National Laboratory,
P. O. Box 1663, Los Alamos, N. Mex. 87545.

B. Coppi and M. N. Rosenbluth, in Proceedings of the
Second International Conference on Plasma Physics and
Cont~oiled Nuclear Fusion Research, Culharn, &ngland,
1965 (International Atomic Energy Agency, Vienna,
Austria, 1966), papers CN-21/105 and CN-21/106.

J. W. Conner, R. J. Hastie, and J. B. Taylor, Proc.
Roy. Soc. London, Ser. A 365, 1 (1979).

J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys.
Rev. Lett. 40, 396 (1978).

D. Dobrott, D. B. Nelson, J. M. Greene, A. H. Glas-
ser, M. S. Chance, and E. A. Frieman, Phys. Rev. Lett.
39, 943 (1977).

~B. Coppi, J. Filreis, and F. Pegoraro, Ann. Phys.
(N.Y.) 121, 1 (1979).

T. Ogino, S. Takeda, H. Sanuki, and T. Kamimura,
Research Report No. IPPJ-384, Nagoya University,
1979 (unpublished) .

D. A. Monticello et al. , in Proceedings of the 1979
Sherwood Meeting (unpublished), paper 2B12.

J. Weiland, H. Sanuki, and C. S. Liu, Phys. Fluids
24, 93 (1981).

R. Y. Dagazian, J. P. Mondt, and R. B. Paris, Re-
search Report No. LA-UR-80-738, Los Alamos National
Laboratory, 1980 (unpublished) .

B. B. Kadomtsev, Plasnnz Turbulence (Academic,
New York, 1965).

T. A. Davydova, U. P. Pavlenko, V. B.Taranov, and

K. P. Shamrai, Plasma Phys. 20, 373 (1978).

26


