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Phase Diagram of a Ferroelectric Chiral Smectic Liquid Crystal near the Lifshitz Point
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The phase diagram of chiral smectic p-decyloxybenzilidene-p'-amino-2-methylbutyl
cinnamate in an external magnetic field parallel to the smectic layers has been determined
by dielectric and optical measurements up to 14.5 T. The data indicate the existence of a
Lifshitz point between the disordered smectic-A, the modulated smectic-C*, and the ho-
mogeneously ordered smectic-C phases. A reentrant C* phase has been found above 8.5
T. The critical field for the unwinding of the helix becomes extremely large as the 4, line
is approached.

PACS numbers: 61.30.Gd

The Lifshitz point' is that point on a line of
second-order phase transitions where an in-
stability occurs in wave vector (k) space. It

/
represents a special case of a triple point be-
tween a disordered, a homogeneously ordered
(k = 0), and a modulated (k g 0) ordered phase.
The experimental data on the behavior of physi-
cal systems near the Lifshitz point are rather
scarce.

Some time ago Michelson' predicted that a Lif-
shitz point exists in the T-H phase diagram of
chiral smectic liquid crystals if the magnetic
field H is applied parallel to the smectic layers.
In this Letter we present the first observation
of the phase diagram of the chiral ferroelectric'
smectic liquid crystal p-decyloxybenzilidene-p'-
amino-2-methylbutyl cinnamate (DOBAMBC) in
an external magnetic field. The data suggest that
a Lifshitz point indeed exists between the dis-
ordered smectic-A, the helicoidally ordered
smectic-C*, and the homogeneously ordered
smectic-C phases.

The observed T, -H phase diagram in a mag-
netic field up to 14.5 T is shown in Fig. 1. The
A-C* line —which is within +50 mK H indepen-
dent was found to be of second order whereas
the C-C* transition line is of first order close
to the A. line. The discontinuity in k becomes
smaller as the Lifshitz point is approached along
the C*-C boundary. Above H =8.5 T the C-C*
line changes its direction so that a reentrant
smectic-C* phase was found.

In order to determine the phase boundaries we
measured the temperature and magnetic field
dependence of the in-plane component of the di-
electric constant e and of the pitch 2s/k of the

smectic-C* helix in 75- pm-thick monodomain
samples. Optically flat glass plates with trans-
parent SnO, electrodes on the inner side have
been used to allow for simultaneous dielectric
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FIG. 1. Phase diagram of chiral DOBAMBC near the
smectic-A —smectic-C* —smectic-C triple point. The
magnetic field H is applied parallel to the smectic lay-
ers. The inset shows the phase diagram predicted by
Ref. 3 whereas the low-temperature part of the ~*-C
phase boundary line has been evaluated from the sine-
Gordon equation following de Gennes (Ref. 6).
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and optical measurements. The monodomain
samples were prepared by slowly (1 'C/h) cooling
the system through the isotropic-smectic-A
transition in a magnetic field of 10 T which was
parallel to the sample walls. In this way all
molecules orient parallel to the walls of the cell.
After that the magnetic field II was decreased to
a very small value, the system was slowly cooled
into the smectic-C* phase, and the sample was
rotated for 90' so that kL HL E, where k/k is the
axis of the helix and E the ac electric field (v
=20 Hz) used for measurements of the in-plane
component of the dielectric constant e. The C-C*
phase boundary and the critical magnetic field
H, for the unwinding of the smectic-C* helix
was determined by measuring e=e(H) at T=const.
The sweep 0-14.5 T was made in about 10 min.
The A. - C* boundary was determined by meas-
uring c=e(T) atH= ocuts. The results have

been corrected for the observed decrease of T,
because of sample aging (-50 mK/h). The optical

measurements were performed by automatically
recording the intensity of the diffracted He-Ne
laser light on a screen behind the sample. The
monodomain sa,mple acted as a one-dimensional
diffraction grating and the intensity of the scat-
tered light was measured with a Si phototransis-
tor. The diffraction maxima were found to be
very sharp at T & T, —0.5 K, whereas at T —T,
the diffracted intensity in the smectic-C* phase
drastically decreases because of the decrease
of the molecular tilt. Just below the A. line the
dependence k =k(H) was measured at T =const
(Fig. 2) whereas at several selected values of H,
k =k(T) was studied (Fig. 3). The sample was
realigned after every C*-C transition passage.

Before discussing the above results let us first
recall" some theoretical predictions of the rele-
vant models proposed so far. The nonequilibrium
free energy density above the &-C* transition can
be —in the presence of an external magnetic field
H which is perpendicular to the direction of the
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FIG. 2. Magnetic field dependence of the inverse pitch at different temperatures. The solid line shows the fit of

the data at &~ —~=0.2 K by Eq. (6) with H~=10.2 T. The inset shows the & vs H plot at ~'~ —'I'=0.2 K used for the

determination of the apparent" Lifshitz field H~.
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pitch —expressed" as
2 apl 2

dz '3 dz 2

where the diamagnetic anisotropy p, is positive
for DOBAMBC; the coefficient a =n(T —T,) varies
linearly with temperature whereas all other coef-
ficients are assumed to be temperature indepen-
dent. K,3 is the elastic modulus and b&0. The
presence of the Lifshitz term, ~, leads in the
smectic-C* phase —in the absence of a strong
enough magnetic field —to a helicoidal preces-
sion of the molecular director n =(n, n„n, ) around
the normal (n„=n, =0, n, =1) to the smectic lay-
ers. Below the A. -C* transition temperature

T, =T, +n 'A'/K» =T, +b,T, (2)

the molecular tilt is nonzero (n„t 0, n, x 0) and the
helical precession of the tilt in the a direction is
characterized for H =0 by a temperature-indepen-
dent wave vector

n, =A/z„.

=L 'f g(z) dz with respect to y, one finds y
=y(z) as a solution of the sine-Gordon equation

d'y/dz' = (y, H'K»/2&') sin(2y)

which admits nonlinear phase-soliton solutions
for H &0. The critical fiel H, for the unwinding
of the helix is here 21% smaller than the Lifshitz
field HI, given by Eq. (5),

H, /Hg =&/4 =0.79,

but is again T independent. The C~-C transition
is now a second-order one and the C*-C phase
boundary should be vertical, i.e., parallel to the
T axis. The constant-amplitude approximation
should fail close to the A. line. It can be shown

In the presence of a magnetic field H which is
smaller than the Lif shitz field III. the A-C* A line
is determined' by

T q =To+b.T(1 +H2/HI. ), H&HI, ,

whereas the A-C line is given' by

T =To+4b.T(H/Hl)2, H&H~,

where

H, = 2W/(SC„q, )"'.

(4a)

(4b)

The magnetic field dependence of the wave vec-
tor of the C* helix is along the ~ line obtained' as
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a,'(H) =e,'(1-H4/H, '), H&H„ (6) 05—

n„=A cosy(z), n, =A siny(z), (7)

whereas k & =0 for H & Hi. . The analysis of Mi-
chelson' further showed that the k line (i.e. , the
C*-C phase boundary line) approaches the A-C*
A. line tangentially at the Lifshitz point and that
the C*-C transition is of first order. The "plane
wave" modulation model of the C* phase used by
Michelson' is valid only close to the + line. For
low enough temperatures one can use for the anal-
ysis of the C*-C phase-boundary line the approach
used by de Gennes' in studying the unwinding of
the cholesteric helix in a transverse magnetic
field. Introducing
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FIG. 3. Temperature dependence of the inverse
pitch at different applied magnetic fields.

194



VOLUME 48, NUMBER $ PHYSI:CAL REVIEW LETTERS 18 JANUARY 1982

to be valid as long as

To —T &&2A /uK» =2AT, (10)

where ~T is smaller' than 50 mK. The phase dia-
gram expected on the basis of the above consider-
ations is sketched in the inset to Fig. 1.

Though qualitatively correct the above model
is too simple to describe the experimental data
quantitatively. Neither the existence of a reen-
trant C* phase above 8.5 T nor the fact that III. is
bigger than 1.27 H, can be accounted for by the
above model considerations.

When k is measured as a function of H at con-
stant T (Fig. 2) the discontinuity ink at the C*-C
transition decreases with increasing T, i.e., on
approaching the Lifshitz point as predicted. The
k =k(B) curve at T, —T=0.2 K can be reasonably
well (Fig. 2) described by Eq. (6) with H~ = 10.2
T as determined by a plot of 0' vs H'. From the
measurement at T, —T =0.1 K, however, one
sees that in fact III. is bigger than 14 T. One can
thus say the system behaves in the way predicted
by Michelson up to T, —T = 0.2 K but that for
T, -T & 0.2 the critical field for the unwinding of
the helix strongly increases with increasing tem-
perature.

As can be seen from Fig. 3 the above model
even fails to describe the T dependence of k at H
=0. Whereas 0 indeed varies relatively little
with temperature over most of the C* phase it

increases drastically on approaching the C*-A
transition when T, —T & 0.2 K.

We believe that fluctuations in the vicinity of
T, result in a renormalization of the constants of
our model which thus become temperature de-
pendent —K» =K»(T), A = A(T) —resulting in a
temperature dependence of the pitch of the helix:
k(T) =A(T)/K»(T). The experimental data show
that the minimum in H, =H, (T) occurs at the same
temperature as the minimum in k =k(T). Since to
a first approximation H, seems to be proportional
to ~k(T) we conclude that A= const and that it is
K» which is proportional to the pitch (i.e., k )
and thus becomes strongly temperature dependent
close to T,.
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