
VOLUME 48, NUMBER 26 PHYSICAL REVIEW LETTERS 28 JuNE 1982

in this case a larger degree of alignment towards
H, „, can be achieved by the interaction of (larger)
Fe cluster moments and H, „,.

Our results are in qualitative agreement with a
recent theory" which predicts the coexistence of
spin-glass and ferromagnetic ordering. This
"mixed phase" is characterized by the coexistence
of a spontaneous (longitudinal) magnetization (fer-
romagnetic order) and a spin-glass ordering of
the transverse components of the spins. Our ob-
servations in an applied field suggest this beha-
vior, i.e., ferromagnetic spin correlation for T
& Tf, and preferentially ferromagnetic spin cor-
relation combined with the development of a
transverse spin component due to long-range
antiferromagnetic interaction for T & T&.

We are grateful to Dr. R. A. Brand for many
enlightening discussions.

B. R. Coles, B. V. B. Sarkissian, and R. H. Taylor,

Philos. Mag. B3, 489 (1978).
2B. H. Verbeek and J. A. Mydosh, J. Phys. F 8, L109

(1978).
3G. J. ¹euwenhuys, B. H. Verbeek, and J. A. Mydosh,

J. Appl. Phys. 50, 1685 (1979).
48. Crane and H. Claus, Phys. Rev. Lett. 46, 1693

(1981).
5P. A. Beck, Solid State Commun. 34, 581 (1980), and

Phys. Rev. B 23, 2290 (1981).
A. P. Murani, Solid State Commun. 34, 705 (1980).

YU. Gonser, R. W. Grant, C. J. Meechan, A. H. Muir,
Jr. , and H. Wiedersich, J. Appl. Phys. 36, 2124 (1965).

SB. Window, Phys. Rev. B 6, 2013 (1972).
~B. Window, J. Phys. E 4, 401 (1971).

'PJ. Lauer, W. Marschm~», and W. Keune, unpub-
lished. An intensity increase of the "shoulder" in the
left Mossbauer line with increasing Fe concentration
can also be observed in the Mossbauer spectra at 4.2 K
of Ref. 8. This shoulder is connected to the high-field
shoulder in P(H).

'~See, e.g. , G. K. Wertheim, Mossbauer Effect: Prin-
ciples and App/ications (Academic, New York, 1964).

2R. J. Borg, Phys. Rev. B 1, 349 (1970).
~ M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201

(1981).

Pinning of a Vortex Line to a Small Defect in Superconductors

E. V. Thuneberg
NOBDITA, DA-2100 CoPenhagen @, Denmark

J. Kurkij arvi'"
Institut fur FestkorPerforschung, Kernforschungsanlage Julich, D SI70 julich, W-est Germany

D. Hainer
Physikalisches Institut der Universitat Bayreuth, D-8580 Bayreuth, West Germany

(Received 9 March 1982)

It is shown that quasiparticle scattering by a defect in a superconductor leads to large
elementary pinning energies of flux lines. In the case of a small radius (8) point defect
the new mechanism outweighs the traditional volume effect by the factor (p/B.
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It is a long-standing problem in the context of
critical current densities of type-II superconduc-
tors that the measured vol.ume pinning forces turn
out larger than predicted by theory. ' Type-II
superconductors are resistanceless only as long
as the magnetic-ft, ux vortex lattice which pene-
trates them remains stationary. Current tries to
push the vortex lattice into motion and the critical
current is determined by the pinning force which
holds the lattice back. This force is a volume ef-

feet arising from a large number of elementary
contributions from individual pinning centers.
The vortex l.attice deforms elastically to accom-
modate itself to the presence of pinning centers.
The problem of determining the energy barriers
between diff erent equilibrium vortex configura-
tions for a random array of pinning centers is
called the statistical summation problem. This
statistical theory needs the elementary pinning
potentials and the elastic properties of vortices
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as input. A great deal of work on the statistical.
summation problem' has not been able to resolve
the dilemma of the pinning forces appearing too
large in experiments. It seems that the root of
the trouble is in the elementary pinning force to
which we address ourselves in this Letter.

Traditionally, it is assumed that voids or sim-
ilar defects pin because they prohibit supercon-
ducting condensation in their locality. Hence a
void attracts normal regions such as a vortex core
in order to avoid the loss of condensation ener-
gy. ' 4 Elementary pinning energies from this
source are on the order of the condensation ener-
gy density iJ.H, '/2 times the volume of the pin-
ning center 4n'R'/3 and a more sophisticated cal.-
culation can only supply a multipl. icative factor
not much different from unity. The quasiparticle
scattering effect considered in this Letter pins
more strongly by one or two orders of magnitude.
The physical basis of the new mechanism is a
nonlocal effect that a scattering center has on
Cooper pairs in its immediate environment. A
scattering center helps a superconductor to sus-
tain deformations of the order parameter up to
distances on the order of the zero-temperature
coherence length $,. Hence, it is energetically
advantageous for a region where the order param-
eter varies strongly, e.g. , a vortex core, to co-
incide with a scattering center. In the case of
small impurities (of size R ), in particular, the
new mechanism leads to elementary pinning en-
ergies proportional to iJH, '$g', larger by the
factor $,/R than the p&, 'R' from the volume ef-
fect.

The here suggested binding energy via quasi-
particle scattering is an effect on the scale $, not
contained in any conventional Ginzburg- Landau
approach or other schemes based on gradient ex-
pansions. Its quantitative evaluation has become
possible with the refined techniques of a recent
new formulation of the BCS-Gorkov theory of

superconductivity, ' the quasiclas sic al method. "
The quasiclassical method is equivalent to the
WEB method of quantum mechanics or the ray-
tracing approximation of optics. It exploits the
short wavelength (kF '=1 A) of electrons at the
Fermi surface compared with the characteristic
length in a superconductor ($, = 10'-10' A ). The
quasiclassical method is exact to leading order
in 1/$ p F. Scattering from walls, impurities,
etc. , appears as boundary conditions [into which
we count the source term in our Eq. (4)] in this
theory. In this paper we use Eilenberger's formu-
lation of the quasicl, assical. method in terms of
$-integrated Green's functions, which formula-
tion appears to be the most comprehensive and
most efficient in practical calculations.

We apply the quasiclassical theory of a small
defect (impurity, void, dislocation ring, etc.) in
a superconductor. ' For a small defect we only
need the leading terms in the quantity o'/$, ', the
cross section of the impurity divided by the
square of the coherence length. There are no
temperature restrictions on the validity of the
theory. The numerical work presented in this
Letter for illustration purposes is limited to de-
fects whose scattering of electrons is primarily
of s-wave character. More quantitative compu-
tations and evaluation of the full pinning potential
as a function of the distance between the vortex
and the defect are deferred to a later publication.
A preliminary comparison of our qualitative data
with experiments' suggests that the agreement of
theory and the measured pinning force improves
considerably. Even the new pinning force, how-
ever, does not meet the threshold criterion,
which has been criticized recently anyway. ""

It turns out that a major part of the probl. em
can be lifted out of the literature. Pesch and
Kramer" have worked out the self-consistent so-
lution of the Eilenberger equation for the vortex
wsthout the defect:

[fie „+v Fek A(H)] w, —& (R),g;, (k, R; e„)]+

ibad

Fk V +g;, (k, IT; e„)= 0,

g;, (k, H;e„)'= —(mK)' (1b)

The propagator g;, (k, R;c„) and the order parameter b, (R) are standard 2&&2 Nambu matrices. The
order parameter is here a function of the position H; g;, depends on the Matsubara frequencies ~„
= (2n+1)vkT and on a momentum direction unit vector k as well as on R. We then proceed in three
steps. First g;, is used to calculate the t matrix of quasiparticle scattering off the defect. The next
step is solving the Eilenberger equation now with a source term (inhomogeneity) representing the scat-
tering via a t matrix. This delivers the Green's function g in the presence of the pinning defect. Fi-
nally the difference in energy with and without the defect can be calcul. ated given g and g;
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The quasiclassical t-matrix equation'

dQ "
t(k, l';E„)=8(l,k')+

& J 4' v($, 5")g;,(0",R=O;e„)f(h",k';e„) (2)

involves g;, only at the center of the defect, R = 0. 8(k, k') is the defect scattering potential conven-
iently expressed in terms of its phase shifts 6, which are input parameters of the theory. The partial-
wave analysis is in fact the most efficient method of coping with Eq. (2). For instance, including only
s-wave scattering,

8(k, k') = —[mN(0)] ~ tan50, (3)

makes Eq. (2) trivial [N(0) is the quasiparticle density of states]. The inhomogeneous Eilenberger
equation reads'

[/ie„+vzek'A(R)jf, -b (R), g(k, R;e„)]+iSv~k V g(k, R;e„)
=[t(k,k;e„),g;, (k, R=O;e„)]5(R).

Far from the defect, the full propagator g approaches g;, . The difference in free energy with and
without the defect is given by'

d'R Tr, 6g k, B;~„;X,R

only have to find new solutions along trajectories
that run through the defect. This is easily done
with standard numerical routines.

With the impurity right at the core of the vor-
tex, r=0, the equations are particularly simple
as the cylindrical symmetry limits the different
trajectories to just those with different polar
angles with respect to the vortex direction. In
Fig. 2 numerical M(r= 0) are displayed for the
vortex structures of Ref. 12 in the weak scatter-
ing limit (5,«1) and in the unitary limit (5,=w/2).

z/z(R= j'i
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FIG. l. Enhancement of the order parameter (gross-
ly exaggerated) in the vicinity of a vortex with an im-
purity at its core. The dashed l.ine represents the or-
der parameter without the impurity.

On(r) = dX Q N(0)

A

where 5g (k, R, e„;X) is the difference g -g;, cal-
culated for the order parameter & (R) = M, (R),
a, (R) being the actual order parameter of the
superconductor without the defect. The result of
the calculation, 5Q(r), is the elementary pinning
potential of the vortex line in the vicinity of the
defect. 5Q(r) is a function of the distance r of
the defect from the center of the vortex line [the
right-hand side of Eq. (5) depends on r through
5g]. At large r the t matrix commutes with g;
The inhomogeneity in Eq. (4) then disappears and
the pinning potential vanishes at large r in agree-
ment with Anderson's theorem" according to
which a nonmagnetic defect in a homogeneous
superconductor does not influence the condensa-
tion energy. Anderson's theorem, however, does
not apply where the defect lies in a region of ap-
preciable bending of the order parameter. Then
the t matrix brings about substantial changes in

g up to distances on the order of $, from the de-
fect. The scattering in fact helps the order pa-
rameter adjust itself to the rapid changes re-
quired by the presence of the vortex. This leads
to an increase in ~A~ as sketched in Fig. 1. The
resulting gain in condensation energy is the
source of the pinning mechanism discussed here.

Equations (1), (2), (4), and (5) can be solved on
a computer with a modest effort. The consti-
tutive equations of the semiclassical theory, here
Eqs. (2) and (4), are ordinary linear differential
equations along trajectories in the directions k.
With 6(R) obtainable from the literature" and a.

simple 5-function inhomogeneity in Eq. (1), we
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5A(r= 0)/((p QN(0) Az/2)

'10

FIG. 2. Normalized binding energy to a small im-
purity (curve A) in the Born approximation and (curve
B) in the unitary limit &p=II/2. The dashed lines A' and
B' are the same in the zero-core-diameter model. The
symbol 0 denotes the scattering cross section of the
impurity and $ p is defined as @v F/Il'Ep.

pretation of experimental results we need both
the elementary pinning potential and the super-
position theory of individual pinning forces into a
bulk effect (summation theory). Both have been
plagued by uncontrol. lable uncertainties. We can-
not really trust the measured elementary pinning

energies at present because of the uncertainties
i.n the summation theory. It is fortunate that we
have a perfect theory of superconductivity, the
BCS-Qorkov theory, within which the elementary
force can be calculated to lay a firm foundation
on which statistical summation theories can be
built, theories which will be applicable in other
contexts as we1.1 such as pinning in ferromagnets,
charge-density wave systems, etc. Indeed, the
efficiency of the computer programs developed
with the aim of evaluating the full pinning potential
of a single vortex to an impurity holds the prom-
ise that the simulation of a vortex lattice with
realistic pinning centers is within the range of
modern computers.

The results of a simple model calculation, a vor-
tex with a vanishingly small core radius, are in-
cluded. This model admits the analytic solution

5Q (r = 0) = —2/p T ln cosh

One should notice that the Born approximation
breaks down at low T and leads to an unphysical
divergence of 60 however weak the scattering.

In conclusion, we have shown that there is an

elementary pinning mechanism of vortices to de-
fects through quasiparticle scattering in addition
to the classical volume effect. For defects small
on the scale $„ the new effect is stronger by the
factor coherence length divided by the size of the
defect as compared with the volume effect. In
the case of a pinning center of 5A in a typical
superconductor the factor can easily be as large
as 100. The pinning potentia3. ean be calculated
quantitatively with a reasonable numerical effort
given the scattering data (phase shifts) of con-
duction electrons off the defect. For the inter-
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