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Radiative-Recoil Corrections to Muonium Hyperfine Splitting
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This paper presents the results of an analytic calculation of radiative corrections to
the leading recoil corrections in the muonium ground-state hyperfine splitting. The
principal new results are of relative order (o'/7l') (m, /mp)ln(nc~/m~). Also presented
is an estimate of the contribution of the hadronic term in the vacuum polarization. A
contribution to the positronium ground-state hyperfine splitting of relative order (o.'/n. ),
arising from vacuum polarization of exchanged photons, is also given.

PACS numbers: 36.10.Dr, 12.20.Ds

Higher-order contributions to the muonium
ground-state hyperfine splitting (hfs) can be
classified as recoil or nonrecoil, where the
former are distinguished by the appearance of
an additional power of the mass ratio m, /m&.
The present status of the recoil corrections is
summarized in an accompanying paper' which
also presents some new contributions. The lead-
ing ("one-loop" ) recoil corrections are of rela-
tive order (n/&)(m, /m„) ln(m„/m, ) with respect
to the Fermi splitting E F. The presence of the
logarithm signals the fact that the dominant mo-
mentum region in the loop integration is m, SP( Pl

p
0

Although nonrecoil radiative corrections to the
hfs have been known for a long time, ' the im-
portance of "radiative-recoil" corrections at the
present level of accuracy was first pointed out

by Caswell and Lepage. ' They also calculated
the leading contribution of relative order (o/~)
&&(m, /m„) ln'(m„/m, ), which is due to vacuum
polarization effects. In this note we report our
calculation of the single logarithm terms of rela-

i

tive order (o./~)'(m, /m„) ln(m„/m, ) arising from
vacuum polarization of the exchanged photons and
radiative corrections to the electron and muon
lines.

Vacuum polarization is the most straightfor-
ward correction and we discuss it first. The
leading contribution (relative order o.') is asso-
ciated with the one-loop exchange kernels in
which the loop momentum is much greater than
that in the wave function. The situation is illus-
trated in Fig. 1. For these contributions, the
wave-function integrations may be decoupled and
the momenta external to the kernels set equal to
zero. Terms contributing to the hfs are easy to
identify since they are associated with an even
number of spatial y matrices. If we represent
the propagator of either of the exchanged photons
by the spectral form

(ct/tt) g „„Jp(s)ds/(q' —s)

and sum over ladder and cross-ladder exchanges,
we find a splitting

A m 'ppg 1 m 2~ vp = — &p, ' ", ds p(s) d)i(2 —)t)(8+X)
m~ X +s 1-)i)

2
fPl e

m, ')i'+s(1 —)i)
(2)

This expression is exact to relative order e' and we note that it is symmetric under an interchange of
the lepton masses. Nonrecoil contributions occur when loop momenta are of order of the electron
mass. This can happen only for the electron loop contribution to vacuum polarization since the char-
acteristic loop momentum is Vs in other cases. Allowing both electron and muon vacuum loop contribu-
tions in p(s), expanding the resulting parameter integrals to O(m, /m &), and discarding the nonrecoil
term we find a splitting

~vp(]. eptons) E F 2 ln " +—ln " + —+ —+ 0

= —6.61(1.0 + 0.250 + 0.113) kHz .
The double logarithm agrees with the result found previously by Caswell and I.epage' and our calcula-
tion obtains exact expressions for the singly logarithmic and constant terms. These coefficients agree
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with the results of a computation by Lepage. '
We have also estimated the hadronic contribution in (2) by assuming that the spectral function is dom-

inated by the p resonance plus a 27t background. Using a Gounaris-Sakurai parametrization of the pion
form factor' we find

E vp& pro, ~

= 63.8(o'/v) (m, m &/m p2)E p
= 0.14(2) kHz . (4a)

~ vp~ mrani, &"—-0.22(4) kHz. (4b)

The uncertainty reflects the sensitivity of this re-
sult to the values of the fitting parameters. In
any case the hadronic correction is small.

In (2) we may take the limit m„-m, to calcu-
late the shift in the positronium hfs due to vacu-
um polarization. For this case we need only re-
tain the term with an electron in the vacuum loop
since the contribution from more massive loop
particles is suppressed by a factor (m, /mi„p)'.
Then we find

~vp ' =~3(o.'/v) Ep ' =1.05 MHz. (5)

Radiative corrections to the electron line are
shown in Fig. 2. The justification of these as the
correct set is complicated by the possibility that
diagrams in which the radiative photon spans an
arbitrary number of Coulomb exchanges between
the external lines might also be important. This
would occur for a given diagram in the Feynman
gauge because the associated loop integrations
peak at momenta of order n'm, and so generate
inverse powers of a. These can compensate the
additional powers of the coupling constant. By
adopting a special gauge, the Fried- Yennie
gauge, ' it can be shown diagram by diagram that
kernels involving additional. Coulomb rungs con-
tribute only in higher order. This gauge, how-
ever, must be used with some care near the

Contributions due to the ~ and y resonances
(-0.03 kHz) plus higher mass contributions (which
we estimate very roughly as 0.05 kHz), should be
added to this. Then the total hadronic contribu-
tion is

!mass shell since both the electron propagator
and vertex have rapid but finite variations in that
region. ' To regulate this behavior we keep the
external electron l.eg slightly off the mass she1. l.

during the calculation and put the external three-
momenta equal to zero only at the end. In that
case we find that the infrared pieces of the span-
ning photon and external electron self-energy can-
cel exactly. It is also possible in this way to
justify the "scattering approximation" in which
the external. lines are initially put on the mass
shell, and the infrared divergence is instead reg-
ulated with a photon mass. Then since the set of
diagrams in Fig. 2 is gauge invariant, we may
calculate in any gauge.

In addition to the infrared region the ultraviolet
region requires a few remarks. Because of the
Ward identity the divergences in the vertices
cancel against those in the electron self-energies.
As usual, proper counting is provided by includ-
ing only one external self-energy. The leading
double logarithms here and in the vacuum polar-
ization are associated with these divergent re-
normalizations. It is not surprising that the elec-
tron line contributions cancel as found previously
by Caswell and Lepage. ' This is in contrast to
the situation with vacuum polarization where the
divergence is removed by renormalization rather
than by cancellation. But the presence of double

FIG. 1. Vacuum polarization corrections to the one-
loop ladder kernel. Note that the vacuum loop can cir-
culate leptons or hadrons. The brace on the muon lines
means that crossed diagrams should be added.

FIG. 2. Radiative corrections to the electron line in
the one-loop kernels. For proper renormalization. , only
one external electron self-energy is needed.
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logarithms in the various diagrams complicates
the calculation of the nonleading pieces. We have
found that by rearranging and combining terms
from the momentum-space expression for each
diagram the double logarithms can be explicitly
cancelled before integration. In addition, while
different diagrams give different denominator
structures, further cancellations take place and
the logarithmic terms can be evaluated easily as
multiples of the lowest-order kernel. The result
is

15 a m, m„

The muon radiative corrections require differ-
ent approximations from those used for the elec-
tron. This is because we are concerned with
exchanged momenta that are large compared with
m„but small compared with m„. Thus for elec-

tron radiative corrections we neglect m, wher-
ever possible, while for muon radiative correc-
tions we neglect the exchanged momentum wher-
ever possible. Thus suggests the use of the
famous low-energy theorem for Compton scat-
tering. ' Unfortunately this theorem applies to
the scattering of real photons on a nonelectro-
magnetic target, so that possible infrared diver-
gences are not considered. Nevertheless, we
have been able to show, using forrnal operator
techniques, ' that an analogous result holds for
our case. Consequently the leading corrections
to order q/m& can be incorporated in an O(n)
anomalous-moment term in the vertex. Replacing
each muon vertex by

y„-y„+(a/4~m„)gy„,

we find that the muon factor to relative order a
becomes

Q 1 1
2 T 2& Q' 2ppg Q' +l& + 2PFL Q' +26m pQ'p, Q' f/' Q'p

(7)

Taken together, the logarithms arising from the
two n/2& terms cancel. This is an old result. "
What is new in our work is an argument that all
other radiative corrections associated with the
muon fail to contribute to the logarithm.

Even though the muon-line radiative correc-
tions do not yield logarithms directly, it is con-
ventional to rearrange the expression so that a
logarithmic radiative-recoil correction does ap-
pear. This is because the dominant nonrecoil
contributions to the hfs contain the total muon
magnetic moment, an experimentally measured
parameter, as an overall factor. This appears
in Eq. (3) of Ref. 1 where the total muon mag-

!netic moment [p& =(eh/2m&c)(1+a„)] occurs in
E F. Since the experimentally determined pa-
rameter is p& rather than m„, comparisons be-
tween theory and experiment are conventionally
made in this way. The term 1+o/2& in (7) pro-
vides the justification of this factorization to
order n since it multiplies the same expression
that would have occurred without muon radiative
corrections. (Justification of the higher orders
in u is fairly obvious, because recoil may be
neglected to present orders of interest. ) With
this convention, the second o/2~ term in (7) is
viewed as an additional radiative-recoil correc-
tion:

F& „'„," ~2(n/v)'(m, /m&)EF ln(m&/m, ) =0.93 kHz. (6)

We summarize the results by giving the ex-
pression for Q(m„/m, ) in Eq. (3) of Ref. 1:

ni„31 m„28
q = -2 ln' " + —ln " ————+1.9 (9)

m, 12 m, 9 3

(the 1.9 comes from our estimate of the hadronic
vacuum polarization term). The new contribu-
tion from (9) (i.e. , excluding the first term)
yields a net value of 1.1 kHz; the total contribu-
tion is -5.5 kHz. It is hard to estimate the size
of the uncalculated nonlogarithmic contributions
which arise from radiative corrections in the
electron and muon lines. In obtaining (6) and (8),
we have set aside many such contributions. In

! principle, they all could be calculated analytical-
ly, but it will probably be better to evaluate them
numerically when the need arises. Their con-
tribution will be A(o/v)'(m, /m„)EF=(0. 116k)
kHz where we expect A to be a number of order
unity, but ea,sily a,s large a,s 3 or 4. We take the
uncertainty due to these missing terms to be
0.5 kHz. The hadronic contribution (4) is of the
order of the experimental uncertainty in the
measurement of the muonium hfs, but is still
small compared to the uncertainty due to the
measurement of the muon magnetic moment and
to the size of various uncalculated terms. These
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results are incorporated in the comparison with
experiment in the accompanying paper. '

During the course of this work we have bene-
fitted greatly from constant interactions with

. G. Peter Lepage. Our confidence in the vacuum
polarization results was greatly enhanced by his
confirmatory numerical work. He expects to ap-
ply the same techniques to the electron- and
muon-line contributions and perhaps eliminate
the uncertainties there. We also acknowledge
useful discussions with G. T. Bodwin, T. Kino-
shita, and G. W. Erickson. This work was sup-
ported by the National Science Foundation.
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