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This paper presents the results of an analytic calculation of the corrections of relative
order o.'(me/mv) to the rnuoniurn ground-state hyperfine splitting due to exchanged pho-
tons. Theory and experiment are compared, with these corrections and some radiative-
recoil contributions described in an accompanying paper taken into account.
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The comparison of the measured hyperfine split-
ting (hfs)' in the muonium ground state with the
tluantum electrodynamics (@ED) prediction' cur-
rently provides the most stringent test of relativ-
istic two-body bound-state theory. This paper de-
scribes the calculation of the recoil corrections
(excluding radiative corrections) of relative order
cta(m, /m&). (Here n is the fine-structure con-
stant and m, and m„are the electron and muon
masses. ) The in& ' terms in order u'(m, /m „)
have been calculated previously ' and ln(m „/m, )
terms have been shown to vanish. ' We present
here the results of an analytic calculation of the
remaining nonlogarithmic contributions. The so-
called radiative-recoil corrections are described
in an accompanying paper. ' Complete details of
both will be given in papers in preparation.

In the Bethe-Salpeter approach, the energy lev-
els of a two-particle bound state are given by the
positions of the poles in the four-point function.
Since the Coulomb potential dominates the QED
bound-state problem, we start with an analysis
of the Coulomb ladder. Each loop of the ladder is
separated into two pieces. One piece, which we
call the "nonrelativistic loop, " is treated exactly
and leads to a three-dimensional wave equation
whose solution yields the lowest-order wave func-
tions and energy levels. The other piece, which
we call the "remainder loop " is treated perturba-

tively along with the various two-particle irreduc-
ible parts of the four-point graphs. There are in-
finitely many ways to partition the Coulomb lad-
der loops into a lowest-order part and perturba-
tive part and, indeed, a variety of approaches
have been presented in the literature. ' In gener-
al, one must include at least the Coulomb-Schro-
dinger part of each loop in lowest order, since
this part is essentially nonperturbative.

For muonium, it is convenient to take advantage
of the small mass ratio (nt, /m„«1) to incorpor-
ate more physics into the lowest-order problem.
By requiring the muon to be on its positive-ener-
gy mass shell, and setting aside some terms in-
volving ~ &- i~ one arrives at the Gross equations
for the bound-state wave functions,

(II, +V)g„=E„'P„,

where H, =a, p+P, m, is the Dirac Hamiltonian,
V =m, V, /E where V, is the Coulomb potential
(other possibilities exist), g„ includes a factor of

&(1 +P „), and E' is related to the total energy E
throughE' =(E'-m„'+m, ')/2E. Obviously, Eci.
(1) incorporates the relativistic properties of the
electron, while most of the dynamics of the muon
have been suppressed except for effects associ-
ated with the reduced mass.

The energy shifts through second order in the
perturbation are4

~ =(o~k~o)71+
(0 IK ln)(n Ik I 0)
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FIG. 1. Kernels contributing to the muonium hfs to
the order of interest. Dashed lines represent Coulomb
interactions (C) and wavy lines represent transverse
photons ('I'). The brace indicates that photon lines are
to be inserted in the muon leg in all possible ways. The
labeling in parentheses indicates the order of attach-
ment of the photon lines to the electron leg.
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where K is the sum of perturbation kernels, ex-
amples of which are shown in Fig. 1. In carrying
out the calculation, it is sometimes convenient to
remove certain pieces of the first-order terms
and combine them with second-order terms. Here
we shall describe the main lines of the calculation
without attempting to detail these refinements.

First we discuss the first order in E. Any giv-
en kernel contains many orders in & and ~, /m „;
but in general, as the number of loops excluding
"nonrelativistic loops" increases, the least order
in & increases. For the present work, it turns
out that we need up to two such loops. We can
use the propagator decomposition described earli-
er and the Gross equation to rearrange the ker-
nels. In this way we organize the kernels so that
there are no more than two loops and no "remain-
der loops. " The final set of kernels is shown in
Fig. 1. Note that the subtracted one-loop kernels
have the effect of removing lower-order contribu-
tions that are over counted in the two-loop ker-
nels. For example, each of the kernels in the
first line of Fig. l contains leading-order (Fermi
splitting) contributions; altogether, the leading
order appears exactly once.

It is interesting that one arrives at the set of
kernels shown in Fig. 1 regardless of the choice
of wave equation. ' Different choices of wave
position manifest themselves as different decom-
positions into lowest- and second-order contribu-
tions in Eg. (2). That is, any feature not incor-
porated in the wave function is restored in the

second-order terms. The use of the Gross equa-
tion means that the relativistic properties of the
electron and certain recoil corrections are in
the wave function rather than in the sum over
states.

In carrying out the evaluation of the first-order
perturbation theory matrix elements, it is useful
to have covariant denominators for all of the pho-
ton propagators, rather than the awkward nonco-
variant denominators contained in the Coulomb
photon exchanges C and the transverse photon ex-
changes T. In order to accomplish this, we carry
out a transformation swithin the kernels to the co-
var1ant Feynman gauge. It is still convenient to
distinguish photons with spatial indices (denoted
by V) from those with temporal indices (denoted
by 0). The net effect of the gauge transformation
on the kernels is that T - V and C» 0 for the set
shown in Fig. 1. There are, in addition, residual
gauge terms associated with the external fermion
lines. Those associated with the muon line van-
ish because the muon is on the mass shell in the
Gross equation. Those associated with the elec-
tron line give contributions that tend to be small. er
than the order of interest, partly because of can-
cellations between the two-loop and one-loop ker-
nels. Gauge terms arising from the graphs la-
beled (TCT) do contribute in relative order n'(m, /
m„). However, these contributions are precisely
canceled by some terms of second order in K

At this stage we wish to expand the first-order
energy shifts in powers of m, /m„. Thus, it is
tempting simply to expand the muon factor of each
graph in powers of 1/m„. However, the presence
of previously calculated terms of relative order
u(m, /m„)ln(m„/m, ) shows that this is not possi-
ble." We organize the calculation so that these
terms, as well as the leading-order contributions,
can be identified and extracted at the start. We
also note that individual graphs contain spurious
nonrecoil contributions. These, as well as spuri-
ous n'(m, /m „)ln(m „/m, ) terms, "are eliminated
bef ore integration by combining kernels generated
by permuting photon connections on the muon leg
(see Fig. l). Thus, we are finally able to make a
direct I„'expansion before integration.

Having carried out these procedures, we find
that in the two-loop contributions the muon factor
always contains at least one & function of the
time component of momentum. For most of the
contributions we can, in the order of interest,
neglect the dependence of the kernels- on the mo-
mentum variables of the wave function. Then we
are left with certain seven-dimensional integrals
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to evaluate. We treat these by combining denomi-
nators using Feynman parameters and carrying
out the momentum integrations. We are then able
to construct six-dimensional integrals involving
only nonrelativistic propagators that lead to iden-
tical parameter integrals. These six-dimension-
al integrals ean be evaluated easily by Fourier
transformation to coordinate space. There are
some cases in which we must retain the wave-
funetion momentum dependence in the kernels.
However, it is then legitimate to make nonrelativ-
istic approximations, which eliminate the time
components of the momentum integrations. The
nine-dimensional integrals that arise in this way
are relatively straightforward to evaluate by
complex integration. The twelve-dimensional in-
tegral associated with the kernel VOV can be com-
puted by use of a variant of the method of Dalgar-
no and Lewis. "

Finally, let us discuss the calculation of the

second-order energy shifts. In second order in
K at least one of the kernels must involve the hy-
perfine interaction, but one may be spin indepen-
dent. A spin-independent contribution does arise
from Coulomb-potential remainder loops and
from the convection part of a transverse-photon
interaction. Because of the structure of E, the
contribution where the hyperfine interaction is
taken twice in the sum over states has two or
more Coulomb interactions between hyperfine in-
teractions. It can be worked out easily by using
the Dalgarno-Lewis method. The result, includ-
ing contributions from the &E/&E' term in Eq. (2),
agrees with a calculation of Caswell and Lepage. "
The contributions involving a spin-independent fac-
tor combine naturally with certain terms from
the first-order contribution. The resulting sum
over states is also evaluated by using the Dalgar-
no- Lewis method.

The theoretical expression for the rnuonium hfs
1S

~v =EF 1+a, +n2R n +&0,2-3—
m&-me me

2m
+o." [2 inn.'' —81n2+3~]+ — '

Qme +mp my me

where m~ =m, m „/(m, +m „) and

'+2m 3il+a ' rn 3

e P e

arises mainly from R (tE)." This value is in good
agreement with the experimental result'

b,v(expt) =4 463 302.88(0.16) kHz.

a, and a„are the electron and muon magnetic mo-
ment anomalies. R incorporates additional radia-
tive corrections" and Q contains the radiative-
recoil corrections given in an accompanying pa-
per. ' The other terms were derived by the uni-
fied treatment described here, the new contribu-
tions being underlined. Because we have expand-
ed in powers of m„', the new term is not applic-
able to positronium. Its contribution to muoniurn
is —2.2 kHz. Those arising from Q have a net
value of —5.5(0.5) kHz of which 1.1 kHz is a new
contribution. Using the ac Josephson value" for
&, we find

b.v (theory) =4 463 303.3 (1.7) (3.0).

The experimental uncertainty of 1.7 results from
the uncertainties due to m„(1.4 kHz) and n (1.0
kHz). The present work has reduced the theoreti-
cal uncertainty from 5.0 to 3.0 kHz by improving
the recoil corrections. The remaining 3.0 kHz

Since the theory prediction uses as input the
value of the fine-structure constant +, one can
regard the measurement of the muonium hfs as
a means for determining +. Recent refinements
in the theory of the electron anomalous magnetic
moment have resulted in greater precision in the
determination of & from pure elementary-parti-
cle physics. " Comparison of these results could,
when the theoretical uncertainties in the muonium
hf s are reduced further, give bounds on the scales
of internal electron structure purely from particle
physics measurements. " Comparison of n from
the muonium hfs with condensed-matter determin-
ations provides an important test of the internal
consistency of QED, as well as of our understand-
ing of the theory of the condensed rnatter meas-
urements. We list below the values of ~ deter-
mined from the muonium hfs, ' the electron anorn-
alous moment, "the ac Josephson effect," the
quantum Hall effect,"and a combination of the
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quantum Hall and ac Josephson measurements":

n '(muonium hfs) =137.035 969(21)(46)

n '(anomalous moment) =137.035 993(5)(9)

~ '(ac Josephson) =137.035 963(15)(&)

n '(tluantum Hall) =137.035 968(23)(~)

n '(ac-Jos. and flu. Hall) =137.035 965(12)(~).

The first errors listed are experimental and the
second theoretical. The question mark in the con-
densed-matter determinations indicates that the
theoretical uncertainties are unknown; they are
possibly very small in comparison to the experi-
mental ones. There is no clear discrepancy be-
tween these results, but further reductions in the
errors and a better theoretical understanding of
the condensed-matter measurements are clearly
desirable.
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