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Does Gravitation Resolve the Ambiguity among Supersymmetric Vacua~
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Globally supersymmetric theories often have several degenerate supersymmetric vacua.
Gravitation splits this degeneracy in such a way that at most one of these vacuum solu-
tions has energy density and cosmological constant equal to zero, while all the rest have
negative energy density. Nevertheless, the vacuum with vanishing energy density is
stable against decay into the others.
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It is common in supersymmetric theories to
find several degenerate vacuum states in which
supersymmetry is unbroken and gauge or global
symmetries are broken in different ways. For
instance, in a supersymmetric SU(N) gauge theo-
ry with a single left chiral superfiel. d in the ad-
joint representation, there are various degener-
ate vacua in which supersymmetry is unbroken
and SU(N) is broken down to SU(M)C8 SU(N -M )

C8I U(1) or to SU(N —1)8U(l) or not at all, . Of
course, in the real world supersymmetry is bro-
ken, but the vacuum ambiguity is nevertheless
important for superunified theories in which the
scale KF of supersymmetry breaking is much l.ess
than the scale M at which the grand gauge group
is broken. These ambiguities are not removed
by higher-order corrections to the vacuum ener-
gy

One may hope that these ambiguities would be
resolved when globally supersymmetric theories
are coupled to gravitation. (For theories with
scalar field expectation values of order M = 10"-
10"GeV, the gravitational terms in the vacuum
energy mill be of order t"I', which is much
greater than the energy F'/2 associ. ated with
supersymmetry breaking if KF «10" GeV. ) It
mill, be shown here that this hope is only partly
fulfilled the different supersymmetric vacua are
no longer degenerate, and only one is likely to
have vanishing cosmolo. gical constant, but most
or all of them are stable.

Before we consider the effects of gravitation,
it will be useful to recall the reason why there
tend to be several degenerate vacua in globally
supersymmetric theories. The potential in such
theories has the general form'

V =Z., -'(z, z*)F.(z)F, (z)*

+-'Z&ID&(z, z")I',

where

J„(z,z +) =8'd(z, z*)/8z' 8z',
F.(z) =8f(z)/8 z',
D„(z,z *)= [8 d(z, z*)/ 8'z] ( t„)„z'.

(3)

(4)

Here z' are the complex scalar components of
left chiral superfields S'; t~ is the representa-
tion of theAth gauge generator on these scalars,
including a coupling-constant factor; and f(S) and
d(S,S +) are the arbitrary functions whose 8~8~
and 8~8~8„8„ terms (F and D terms) appear in
the Lagrangian. For renormalizable theories the
superpotential f(z) is a cubic polynomial and d(z,
z*)= ~z~'; a general d function is included here
because renormalizability will not be maintained
when we include the effects of gravitation. (With
such a general d function, the kinetic term for
the scalars is -J„B„z'8"z'*.) The gauge group
is assumed here to be semisimple, so no Fayet-
Iliopoulos terms' appear in D„. A supersym-
metric solution is one for mhich all I', and all D„
vanish.

Any gauge group G will generally have several.
"big" subgroups 8„, mith the property that if 6
is spontaneously broken to H„, then all D~ vanish
solely as a consequence of the remaining sym-
metries in II„. Inspection of Eq. (4) shows that
all D~ vanish if there are no broken generators
of G that are neutral under II„. For example,
this is the case if G is SU(N) and H„ is either
SU(N) itself, or SU(N —1)CE U(1), or SU(M)I8ISU(N
-M)3 U(l), or SU(L)SSU(M)3SU(N -M —L)

Cm U(1)SU(l), etc. , irrespective of the representa-
tions of SU(N) provided by the chiral scalar su-
perfields of the theory. Suppose we constrain the
scalar field expectation values to be invariant
under any one of such big subgroups II„. The con-
ditions for a vacuum with unbroken supersym-
metry are then just I", =0. Now, the constraint
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of invariance under H„reduces the number of
free complex parameters z' available to satisfy
these conditions, but since f(z) is invariant under
G g H„, this constraint reduces the number of in-
dependent F, that need to be made to vanish, and

by precisely the same amount. With equal num-
bers of equations and complex variabl. es, we ex-
pect at least one supersymmetric solution for
each big subgroup II„. This could only be avoided
if f(z) is subject to special constraints, which
make the F, dependent on only a limited set of
combinations of the z', as in the O'Raifeartaigh
model. 4 In the absence of such constraints,
there will be at least one supersymmetric vacu-
um solution for each big subgroup H„. It can
happen that the solution which is invariant under
a given one of the big subgroups is also invariant
under a larger subgroup, and that only a few of
the largest subgroups are realized as distinct
vacuum symmetries. Even so, some ambiguity
will arise if there are any symmetry-breaking
solutions at all.

Now let us look at the effects of gravitation.
The mysterious physics of the Planck scale in-
duces small nonrenormalizable interactions in

the effective Lagrangian that describes physics
at l.ower energies. However, the above discus-
sion shows that such terms cannot resolve the
ambiguity between diff erent supersymmetric
vacua. For instance, there may be terms in f(z)
higher than cubic, and terms in d(z, z*) beyond

Izl', all. suppressed by factors of Newton's con-
stant 6; even so, the vacuum energy is still of
the form (1), and we still expect solutions of the

equations F, =D„=0 invariant under each big sub-

group.
But gravitation enters in the effective Lagran-

gian that describes physics at sub-P1, anck ener-
gies not only through the appearance of sup-
pressed nonrenormalizable terms in f and d, but

also through the appearance of light particles:
the graviton and gravitino. Supersymmetry then

requires that the graviton and gravitino terms in

the Lagrangian be accompanied by other terms
involving scalar fields. These change the form
of the scalar potential to'

V = exp(8mGd)[J„'F, F„*—24mGI f I']

+ lZ~ID~I'

with J„and D„ the same as before, but now

F.=sf/az ~8~Gfad/Sz .

For each stationary point of the original po-

tential (1), we expect (provided G [z j' «1) a near-

by stationary point of the corrected potential (5).
Those stationary points that correspond to the
supersymmetric vacuum solutions discussed
earlier are quite easy to find. Again, constrain
the scalar field values to be invariant under any

one of the "big" subgroups B„of the gauge group,
so that all D„vanish. In the near neighborhood

of the solution of the equations sf/&z' = 0, one

expects to find a solution of the equations F, = 0,
with F, now given by (6). It is easy to see that

these solutions are stationary points of the eor-
reeted potential (5), the variation in I f I' being
compensated by the variation in d. At any such

stationary point z' =z„', the potential takes the

value

V, = —24&G If(z„)l ' exp[smGd(z „,z„*)].

To lowest order in Glz„ I', we ean drop the expo-
nential and any nonrenormalizable terms in f(z),
and take z„as the solution of the original equa-
tions sf(z)/sz' = 0 invariant under H„, so that

V„=-24mGI f(z„)lc o'+O(G').

The value of f(z) is in general different for each
supersymmetric vacuum solution z„, so the de-
generacy among the different solutions is split.
For instance, for a renormalizable SU(N) gauge
theory with a single chiral scalar superfield 8 in
the adjoint representation, ' the function f(z) takes
the form

[f(z)]~,= c + b Trz'+ a Trz '

with z now a traceless complex NxN matrix. A

straightforward calculation shows that for SU(N)
broken to the "big" subgroups SU(1V&)SSU(N -M)
SU(1) [including the cases M =1 and M =0, with

H, = SU(N —1)8 U(1) and H, = SU(N)] there are su-
persymmetric vacuum solutions z„with

4b MN(N -M)
N = o 27&2(N ~j )

We must take bt 0 [otherwise SU(N) could not be
spontaneously broken] so these solutions all give
diff erent vacuum energies.

On observational grounds, the physical vacuum
energy must be very close to zero. It is always
possible to adjust an additive constant in f(S)
(such as c in the above example) to make f(z) and

the vacuum energy vanish for any one of the vacu-
um solutions. However, the vacuum energy will
then be negative definite for all of the other solu-
tions. We are left with the disturbing conclusion
that in typical supersymmetric theories, our
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nearly flat and empty vacuum is not the state of
lowest energy-.

However, this does not mean that our vacuum
is unstable. The difference in energy densities
between the supersymmetric vacua are relatively
small, of first order in G, which according to the
work of Coleman and de Luccia' makes it possible
that gravitation might stabilize the zero-energy
vacuum. ' In fact, this must be the case. General
theorems' tell us that in supergravity, under the
constraint of fl.at space and zero energy density
at large distances, all states have positive ener-
gy. Thus although the energy woul. d be lowered
if the seal. ar field expectation value were every-
zuhere at one of the zeros of F, (z) with f(z) 0 0,
there is no way to gain energy by making a transi-
tion to such a lower energy state through pertur-
bations of finite size.

This can be seen in detail. by considering the
formation of a thin-wall. ed spherical bubble con-
taining space with negative energy density —& in
a flat-space background with zero energy density.
Reference 7 shows that the appearance of such a
bubble is impossible if & «, where &, is a crit-
ical energy density

e', =6mGS~

with Sy the bubble surface tension. One way to
understand this is by considering the total energy
of the bubbl. e and its gravitational. field; a straight-
forward calculation gives"

E = —(4m/3)eR + 4' S [1+8m''GR2/3]

—8m2GS 2R',

where R is the bubble radius, limited by the con-
dition that

8wGR'(~, —e)/3- 1.

(This condition is needed to avoid a coordinate
singularity in the bubble wall, which would make
the whole space two sheeted. ) For e - e, , E re-
mains positive definite for all nonzero R satisfy-
ing (ll), so formation of such a bubble is ener-
getically impossible. On the other hand, for e

&e, Eq. (11) is satisfied for all. R, and for R suf-
ficiently large E vanishes and then becomes nega-
tive; hence bubble formation is here energetically
possible, and once formed, the bubble will re-
lease energy by continual expansion.

Now we must evaluate the critical energy (9)
for supergravity. The general resuLts of Ref. 7

give in our case

dz' 2

S, = dsQ
cfs

, Bf( ) '
Bz

S, = dsQ +(, +2lf(z, )l
dzo af(z) *'

with $ the phase factor g—= f(z, )/l f(z, )l. This
yields a lower bound of 2l f(z, )l for S„which to-
gether with Eq. (8) sets an upper bound on e just
equal to e, :

e = 24mG
l f(z, )l2 ~ 6wGS = e, .

(13)

(14)

The inequality in (14) becomes an equal. ity if and
only if there exists a solution of the differential
equation

dz'/ds = —$ [Bf(z)/Bz']+ (15)

such that z-z, outside the bubble and z-zy in-
side it. If there is no such solution, then e &e, ,
so bubbl. es of negative energy density are ener-
getically forbidden. On the other hand, in many
cases [e.g. , if f(z) is a cubic polynomial in a
single complex scalar] there actually is a solu-
tion of Eq. (15) with appropriate boundary condi-
tions. In such cases e =&, to order G, and it is
necessary to carry these calculations to higher
order to check the stability of flat space. The
general theorems of Ref. 9 indicate that here al-
so e & e, , and bubble formation is energetically
impossible.

We conclude that a given supergravity theory
will generally have at most one flat-space vacu-
um solution, and that this state will be stable
against decay into the negative-energy vacua.
The negative-energy vacua are also stable. " The
question of which vacuum state in a given model
will actually be occupied may perhaps be an-
swered by following the history of the universe
at early times, when the various vacua have sub-
stantially different thermal energies. " However,
this raises a problem. At very high temperature
thermal effects favor the most symmetric phase,
and it has been suggested that the transition to
broken symmetry occurs through the growth of
the grand unified coupling constant with decreas-

the integral over proper radial distance s being
taken from deep inside the bubble to far outside
it, with z (s) the function that minimizes (12) sub-
ject to the boundary conditions that z'(s) ap-
proaches the stationary points z, ' and z,' of f(z)
deep inside and far outside, respectively, at
which f(z,)=0 and f(z,)&0. Equation (12) can be
rewritten as
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ing temperature, which might alter the coeffi-
cient of T in the free energy density. ' But at
temperatures below about (GM')' ~ (10"to 10"
GeV for M = 10" to 10"GeV) these thermal en-
ergies are negligible compared with the gravita-
tional splitting, which as we have seen must
make our present fl.at-space broken-symmetry
phase the one of highest energy density. Thus if
supersymmetry is really broken only at energies
below 10"GeV, then it is difficult to see how a
universe that starts in a grand-unification-sym-
metric phase can ever get out of it."
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