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serve that the Totsuji-Ichimura convolution approximation usually considered for the homogeneous
OCP but readily extended to the general case,

a'(up. v.) =u'(v, e.)P '(v.v.)IP (v,) +P '(e,v.)P'(w. v, )IP (e.) +P '(v.v, )P'(e,v, )IP (e,)

+ fdic. p'(~, ~.)~'(e,~,)~'(~.v.)lp'(~. ), (1s)

does indeed satisfy M(l; 2) =0 whenever M(l;1) =0.
This is perhaps not surprising since (1S) is cor
rect to first order in the plasma coupling parame-
ter but may be responsible for the good results
one obtains with this approximation' and should
be preserved in modifications designed to improve
its short-distance behavior.

It appears, rather surprising1y, that when & is
equal to the half-space, i.e., &'& 0, then correla-
tions "parallel to the wall" decay like ~~~ ". This
can be verified explicitly for the OCP in v =2 at
Pe' =2 and perturbationally in the general case.'
An extension of our theorem shows that this is
sufficient for the l' =0 sum rule but not for l & 0.'
Indeed we argue" that stronger decay which
would imply the E =1 sum rule would have some
very unphysical consequences.
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A simple mathematical model is given which shows how phase locking, bistability,
period-doubling bifurcations, and chaos may result from periodic stimulation of nonlin-
ear oscillators. A new fixed-point theorem, which extends the classic results of Arnold,
is used in the analysis.

PACS numbers: 05.40.+j, 03.40.-t, 87.10.+e

More than fifty years ago, in a study of electric
circuits representing coupled pacemaker sites of
the heart, it was demonstrated that as the fre-
quency of periodic input to a nonlinear oscillator
was changed, many types of phase-l. ocked rhythms
mimicking normal and pathologic cardiac rhythms
could be observed. ' Subsequent studies showed
that periodic inputs to nonlinear oscillators could
also lead to bistability (in which one of two dif-

ferent phase-locked patterns was observed, de-
pending on the initial condition) and aperiodic
dynamics. "Recently, period-doubling bifurca-
tions and aperiodic "chaotic" dynamics were ob-
served from periodically driven nonl. inear oscil. -
lators. ' The transition from periodic to aper-
iodic dynamics displays universal properties
predicted theoretical. ly."

Our interest in phase locking stems from stud-
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x,.„=x,. +7+& sin2mx, , (2)

which has been proposed as a mathematical mod-
el for periodically forced nonlinear oscillators. '
If the Poincare map is a monotonic function of x
[e.g. , for 0&b ~ 1/2w in Eq. (2)], the dynamics
are well understood. " For b &1/2w in Eq. (2),
the Poincare map is not monotonic and bistability,
cascading period-doubling bifurcations, and chaos
have been observed. "" Experimental studies of
the cardiac oscillator show that for some stimu-
lus strengths, the Poincare map is not monotonic
[Ref. 5, Fig. 2(d)] . In the following, a new topo-
l.ogical. result and numerical computations are
used to analyze Eqs. (1) and (2) as the Poincare
map changes from a monotonic to a nonmonotonic
function. The analysis shows that if the Poincare
map is not monotonic, both bistabiltiy and period-
doubling bifurcations are observed over a large
range of values in parameter space.

Iteration of Eq. (1) generates a sequence of
points x» x, = f(x), x, = f(x,) = f (x,), . . . . There
is afixed point of period N if

xg =xo; x; ~xo, for i =1,2, . . . ,N —1. (3)

If there is a fixed point of period N, then there
mill be a cycl.e of period N, x,*, x,*,. . . , x„*,
where x„*(mod1)=x,*(mod1). A cycle is (locally)
stable if

ies of the effects of periodic stimulation of spon-
taneously beating cardiac cel.ls by brief electrical
current pulses. In response to periodic input,
phase locking, period-doubling bifurcations, and
aperiodic dynamics were experimentally observed
as the frequency and amplitude of the stimulus
were varied. ' For situations such as the cardiac
oscillation, in which the oscillator relaxes rapid-
ly back to the limit cycle following a perturba-
tion, the dynamics can be approximately de-
scribed by the finite difference equation

x,.„=f(x, , ~) = g(x, )+~,
where x,. (mod1) is the phase of the oscillation im-
mediately before the ith stimulus, ~ is the period
of the stimulation, and g is an experimentally
measured function which describes the effect of
a single pulse on the rhythm. The phase x,. (mod1)
is defined on the unit circle, and 7 is measured
in units of the intrinsic period of the oscillator
without perturbation. The function f is called
the Poincare map. As an example, me analyze

Stable cycles of period N are associated with
stable phase-locked dynamics. "' If there is a
stable cycle of period N, there is stable N:M
phase locking where M =x„,*-x,*. The ratio,
p =M/N, is called the rotation number. " If an
extremum of f is on a cycle, the cycle is stable
and is called a superstable cycle. ' We call the
locus of superstable cycl.es as a function of b and
~ the skeleton of the phase-locking zones. The
skeletons of two-parameter quartic and cubic
maps have been described. "

The degree (or winding number) of a function,
f(x), defined on the unit circle measures the num-
ber of times the function winds around the unit
circle as x traverses the unit circle once. In the
following, we assume that the degree of g(x) in
Eq. (1) is 1 so that

g(x+j ) = g(x)+j, (5)

where j is an integer. Equations (3) and (5) lead
to a translational symmetry in the phase-locking
zones. If there is N:M phase locking for a given
value of v, then for 7' = 7+p, where p is an in-
teger, there will be N:(M+pN) phase locking. ' If
in addition g(x) is odd [g(x) = -g(-x)] and if there
is stable ¹Mphase locking for an initial condi-
tion x,* with v=p+e in Eq. (1), then there will
also be stable N:[(2p+ 1)N -M] phase locking for
an initial condition of -x,* with ~'=p+1 —e.'

If the Poincare map, Eq. (1), is monotonic, p
is a monotonic function of 7 which is independent
of the initial condition and is piecewise constant
on the rationals. " Consequently phase-locking
zones corresponding to all rational ratios are
present. " What happens to these zones when the
Poincare map is not monotonic~

Assume that g(x) is of degree 1 and has a single
maximum, x „,and minimum, x;„,on the in-
terval [0,1]. Let x, =H, (r) where the H, (w) are
functions found by iterating Eq. (1) from x,=x~, „.
From Eqs. (1) and (5)

H„(j) -H, (j -1)=N. (6)

There will be a superstable cycle for each value
of ~ for which x,(mod 1)= H„(7)(mod 1). Since
H„(~)(mod 1) must equal any fixed value between
0 and 1 at leastN times as 7 varies from j —1 to

j, there mill be a minimum of N superstable cy-
cles associated with N different rotation numbers
occurring at N distinct values of v. Figure 1
shows H, (~), i =1,2, 3 f.or three values of b as a
function of w for Eq. (2). The iterates of the mini-
mum also give rise to stabl. e cycles. Therefore,
from the translational symmetry of phase-locking
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FIG. 1. The functions H;(7) =f'(x~») for Eq. (2), in which x~» = (I/2w) cos '(- I/2wb). H; (7) (mod 1) = x~» at
the intersections with the dashed horizontal lines. These intersections give the values of 6 and 7 at the superstable
cycles. (a) b =0.25; (b) b =0.50; (c) b =0.75.

zones, for a Poincare map, Eq. (1), of degree 1
with a single maximum and minimum on the in-
terval (0, 1), there mill be at least ttvo values of
~ at tohich there exist superstable cycles for each
rational rotation number.
theorem is the main analytic result of this Letter.

To illustrate this result, consider Eq. (2). The
boundaries of the staMe N:M phase-locking zones
(1&N &5) for 0- b ~1/2w in Eq. (2) shown in Fig.
2 agree with Arnold's classic results. " For b

&1/2w, the right-hand side of Eq. (2) has a maxi-
mum and a minimum, and therefore there must
be at least two values of v that give superstable
cycles for each rational rotation number. The
skeleton for b &1/2w corresponding to the stable
phase-locking zones for 0&b &1/2w is shown in
Flg. 2.

Next consider the period-doubling bifurcations
for Eq. (2). For ~=1 as b increases there is a
period-doubling bifurcation to a single orbit of

period 2 at b=m ', abifurcation to two stable
period-2 orbits at b =0.5, a bifurcation to two
stable period-4 orbits at b = (0.25+ 1/2w')'/', and

additional bifurcations leading to chaos as b con-
tinues to increase. "" Sequences of period-
doubling bifurcations also originate from other
phase-locking zones. " The geometry of the per-
iod-doubling zones has been investigated by nu-
merically computing the skeleton. In Fig. 3 all
the superstable cycles associated with cycles for
which p=1 are shown for 1 &N & 4, b&0.65, and

0.7&& &1.3. On the lines b =v —0.4 b =1.4 —v. in
Fig. 3 there is a sequence of bifurcations which
follows the Sarkovski sequence. ' Further, a
topologically equivalent skeleton appears to arise
in other V-shaped regions tangent to b =1/2w in

0.6

502
O. l

op
1.0 1.25 1.5 1.75 2.0 0

0.7
I

1.0

FIG. 2. The N:M phase-locking regions for 1 &N& 5
for b & 1/2n. and the associated superstable cycles for
b &1/27t. There is bistabiiity at the intersections of the
loci of the superstable cycles.

FIG. 3. N:JI/I superstable cycles for (1&N = M& 4)
associated with phase-locking patterns with rotation
number, p = 1.
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Fig. 2. A topologically equi. valent skeleton for
period-1, -2, and -3 orbits of the asymmetric
cubic map has been found. "

On the basis of the preceding resul. ts we propose
the following structure for the skeleton and phase-
locking zones of Eq. (2). Each zone of stable
phase locking for b & 1/2m extends through b = 1/2m

and then splits into two branches (Fig. 2). In the
V-shaped region of the extensions of each "Arnold
tongue" are period-doubling bifurcations. The
skeleton of the phase-locking zones in each one
of these V-shaped regions is topologically equiva-
lent to the skeleton for p=1, Fig. 3, but vyith a
different rotation number. Bel,ated conjectures
for a two-parameter family of quadratic maps of
the plane have recently appeared. '~

If, as many have proposed s, s-v, ~o-x2 periodi. cal
ly forced nonlinear oscillators can be modeled
by one-dimensional finite difference equations
having the topological and symmetry character-
istics of Eqs. (1) and (2), then the topological
structure of the phase-locking zones shown in
Figs. 2 and 3 may be widely observed in the bio-
logical and physical sciences. Experimental ob-
servations will be difficult since many of the
phase-locking zones only occupy small areas of
the parameter space, and not all initial condi-
tions necessarily attract to the stable phase lock-
ing, even when it is present.
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