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It is proven that when correlations in an equilibrium classical system in v dimensions,
v~ 2, containing charges decay faster than (distance) " ' then the charge cloud sur-
rounding particles has no multipole moments of order k ~l, . This yields 3+1 sum rules
with l = when the decay is exponential. This extends previous results for L ~2 sum
rules and also generalizes them to systems containing fixed dipoles (or higher multi-
poles). Some consequences are described.

PACS numbers: 05.30.Fk, 71.45.Gm

We study v-dimensional, t & 2, classical
charged systems described by correlation func-
tions satisfying the equilibrium Born-Green- Yvon
(BGY) hierarchy. These equations are satisfied
by finite-volume canonical ensembles and are
expected (in many cases can be proven) to hold
also for all limiting states. We proved earlier"
that if the correlations have good clustering
behavior then the net charge and dipole and quad-
rupole moments of the density engendered by
specifying the positions of any n particles must
vanish. We called the resulting conditions on
the (n+1)th correlation function the l =0, 1,2

sum rules. Only the l =0 sum rule seems to

be generally known. This is the only nontrivial
one for n =1 in a homogeneous system where it is
called the electroneutrality condition. For in-
homogeneous systems or for n & 1 the / = 1,2 sum
rules are also relevant and useful. '4

The origin of the sum rules lies in the long-
range nature of the Coulomb forces. They are
unaffected by any finite-range interactions, e.g. ,
hard cores, between the particles. They express
the fact that correlations cannot decay "faster"
than the total, i.e., direct plus induced, interac-
tion. indeed the arguments show that systems
with power-law potentials, e.g. , Lennard- Jones,
have similar power-law decay of the correlations. '
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What is remarkable about Coulomb systems, i.e.,
real matter, is that correlations can and often do
decay much faster than any power law. Expo-
nential or faster decay can be proven rigorously
in one dimension, for a one-component plasma
in v =2 at Pe' =2 (Ref. 4), and at high tempera-
tures and low densities in all dimensions. ' Expo-
nential decay of correlations is in fact expected
to hold generally in the fluid phase of charged
systems —an expectation based on experiment,
computer simulation, and approximate theories. ',

In this note we extend our previous results for
l- 2 to arbitrary l: Whenever the correlations
decay faster than & ~' ' then the charge density
in the vicinity of any particle contains no multi-
poles of order less than or equal to l. In particu-
lar, exponential decay implies an infinite number
of such sum rules. Another extension of our re-
sults is the inclusion of particles with permanent
dipoles (or higher multipoles) in the charged sys-
tem (pure dipoles are known not to screen).

While our proof is based on the classical BGY
hierarchy we expect the results to hold also for
quantum systems. We consider a mixture of
charged particles and permanent dipoles moving
in the whole v-dimensional space ' or in a re-
stricted domain S defined by appropriate walls.

The particles of species & carry a charge e and
a, permanent dipole moment of strength d„; for
some n, d„or/and e„can be zero. We denote by
r and ~, respectively, the position of the particle
and the orientation of its dipole moment p =d„&,
and we use the notation q = (o.', v, ~) and

fdq = f,dr fd~g. , fd~ I =I.

The particles are subject to the action of exter-
nal forces and interact by two-body forces of the
form

F (q„q,) =F.(q, ;q,)+Fi(q, ;q, )

The finite-range part I', includes in particular
strong local repulsion or hard-core effects and
I'1. consists of charge-charge, charge-dipole,
and dipole-dipole terms. The external forces can
include a fixed charge density in S, e.g. , jellium.
We assume that the dielectric constant & is the
same inside and outside X) and set ~ =1. The case
of different dielectric media will be treated else-
where. '

We denote by p(q, ), p(q, q,), . . ., the singlet den-
sities, the pair correlation functions, etc. , and
introduce the truncated (Ursell) functions

p'(q, q.) =p(q, q.) —p(q, )p(q, ),
p'(q, q.q.) =p(q, q,q.) p(q, )p(q—,q, ) p(q, )p(q—,q, ) —p(q. )p(q, q.) +2p(q, )p(q, )p(q, ).

(2)

(4b)

where F(q, ) represents the total average force on particle l.
We shall always assume that the truncated correlation functions are absolutely integrable,

fdq, l p'(q, q„) l
& const, n ~ 2.

l.et p(ql q, ~ ~ ~ q„) be the excess particle density of species n given that there are particles of species
+]y ~ ~ ~ 0+/ at ]y ~ ~ ~ p~gp

As usual, the equilibrium p at temperature T are assumed to satisfy the stationary Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY) equations'

k~TV p(q, ) =F(q,)p(q, )+fdqF(q„q)p'(q, q), (4a)

k BTV,P(q„q,) =tF (q, ) +F(q„q,)j p(q, q, ) + fdqF(q, ;q)[p(qq, q) —p(q)p(q, q, ) ~,

n

p(ql q, ~ ~ ~ q.) = '"'"'" ~ zt (q;q.),
p(q, q.) —p(q)

where o(q;q;) =5„„,&(r -r;)5(&u —~;). The (l,n) moment relation expresses the fact that M(l;n), the
multipole moment tensor of order t due to p(ql q, . . .q„), vanishes,

M(~;n) =fdqT, (q)p(ql q, q„),

(6)

T, (q) =e„, T,'(q) =e v'+d„(u',

T, ''(q) =e„v'v'+&d„(cu'r'+ e v') —(1/v)(e~lrl '+d ~v)5", a, b =I, . . . , v.

If d =0 and v =3, T, (q) =e~lrl I' t„(v), where I', „(v) are the spherical harmonics and v =r/lrl. We also
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write out more explicitly the M(l;2) =0 equation l ~ 1 for the three-dimensional homogeneous, one-
component plasma (OCP):

p fd'~, l r, l'P, (9)[g,(r~~x) -g, (~r)) =-
I r&l'g, (r,) (8)

with g (&&~ ~ ~ ~ &&, -~) =p "p(~~' &„,0), P&(e) the lth order Legendre polynomial, and 6 the angle be-
tween r, and ~r.

We now state our main theorem. Let Q&@', v ~ 2, be an unbounded region containing an open v-di-
mensional cone (infinite solid angle of directions) in which the asymptotic densities of charged particles
do not all vanish. If the correlations satisfy the condition

I
~""'

p (q, q„) I
& const

for some

0& r =sup( x —v
~

i j =(1& ~ ~ ~ &k) &
k =2& . . .&n+1

(10)

where F, are the spherical harmonics. The multipole expansion of the Coulomb potential gives the
identity

then all the moments M(l';n'), l'- l, n'-n vanish.
We sketch the proof of M(l;1) =0 for a system of pure charges in v =3. The general case is similar.

Combining (3) and (4) gives

p(q, )p(q. ) f+(q, ;q)p(q I q,)dq =& a»,p'(q, q, ) —I+(q, ) +I" (q, ;q,) ~ p'(q, q, ) f+—(q„q)p'(qq, q.)dq

Let ~, =~,/~ ~, ~ be a fixed unit vector in the open cone contained in Q. Lemma 1 and 2 of Ref. 2 show,
using (9), that the right-hand side of (10) decays faster than I &„I

'"""as
I &,I- ~. This yields M(0;1)

=0.
Proceeding by induction, let us assume that

M.@;I)= f~qe. I~I "~,.(~) p(qlq, ) =0, &=1, . . . ,l-1,

(
p j ~y'"a~

j + j
&1 qe r'j ~ ~'~p(q~q, ) = Q V, ™„,', — M (k;I).+ m= "k

One can therefore subtract in the integrand on the left-hand side of (10) the l —1 first terms of the Tay-
lor expansion of the force Ii (q;q, ) about v, . Lemma 1 of Ref. 2 implies then

qe,r'~ ~ ~ ~ x"p(q/q, ) =0.

Taking the scalar product of the above equation with r", and using (11) yields

Q I, *(r,)M.(i;I) =0
m =-l

(12)

for an open set of unit vectors ~» and hence M(l;1) =0. It is here where the open-cone condition is
necessary.

As already mentioned in the introduction there is a wide range of physical conditions in which sys-
tems containing free charges are expected and in some cases are proven to cluster exponentially fast.
In these cireumstanees the shielding of fixed charges is perfect —the excess particle density carries
no multipole moments of any order. This was indeed verified explicitly by Janeovici' for the v =2
OCP at Pe =2.

It would seem useful and it may even be important to take this fact into account when constructing ap-
proximate theories of plasmas, ionic salts, molten metals, etc. If one already has a pair correlation
function, obtained from some approximate theory, e.g. , hypernetted chain, mean spherical 6 7 and
wants to obtain information about the higher-order correlations, as would be necessary for obtaining
microfield distributions in a plasma, then one should only use constructions which respect the sum
rules. Similar caution needs to be used in deriving approximate integral equations for the pair correla-
tion by making some closure Ansatz in the BGY hierarchy. In this connection it is interesting to ob-
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serve that the Totsuji-Ichimura convolution approximation usually considered for the homogeneous
OCP but readily extended to the general case,

a'(up. v.) =u'(v, e.)P '(v.v.)IP (v,) +P '(e,v.)P'(w. v, )IP (e.) +P '(v.v, )P'(e,v, )IP (e,)

+ fdic. p'(~, ~.)~'(e,~,)~'(~.v.)lp'(~. ), (1s)

does indeed satisfy M(l; 2) =0 whenever M(l;1) =0.
This is perhaps not surprising since (1S) is cor
rect to first order in the plasma coupling parame-
ter but may be responsible for the good results
one obtains with this approximation' and should
be preserved in modifications designed to improve
its short-distance behavior.

It appears, rather surprising1y, that when & is
equal to the half-space, i.e., &'& 0, then correla-
tions "parallel to the wall" decay like ~~~ ". This
can be verified explicitly for the OCP in v =2 at
Pe' =2 and perturbationally in the general case.'
An extension of our theorem shows that this is
sufficient for the l' =0 sum rule but not for l & 0.'
Indeed we argue" that stronger decay which
would imply the E =1 sum rule would have some
very unphysical consequences.
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A simple mathematical model is given which shows how phase locking, bistability,
period-doubling bifurcations, and chaos may result from periodic stimulation of nonlin-
ear oscillators. A new fixed-point theorem, which extends the classic results of Arnold,
is used in the analysis.
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More than fifty years ago, in a study of electric
circuits representing coupled pacemaker sites of
the heart, it was demonstrated that as the fre-
quency of periodic input to a nonlinear oscillator
was changed, many types of phase-l. ocked rhythms
mimicking normal and pathologic cardiac rhythms
could be observed. ' Subsequent studies showed
that periodic inputs to nonlinear oscillators could
also lead to bistability (in which one of two dif-

ferent phase-locked patterns was observed, de-
pending on the initial condition) and aperiodic
dynamics. "Recently, period-doubling bifurca-
tions and aperiodic "chaotic" dynamics were ob-
served from periodically driven nonl. inear oscil. -
lators. ' The transition from periodic to aper-
iodic dynamics displays universal properties
predicted theoretical. ly."

Our interest in phase locking stems from stud-
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