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Multiple Pole in the Electron —Hydrogen-Atom Scattering Amplitude
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It is demonstrated that the amplitude for electron-hydrogen-atom forward scattering
has the third-order pole at the point E = —13.6 eV, E being the energy of the incident
electron. The coefficients which characterize the pole are calculated exactly. The in-
validity of the Born approximation is proved. The contribution of the pole singularity to
the dispersion relation for the scattering amplitude is discussed.

PACS numbers: 34.80.Bm, 03.65.Nk

In this paper we consider the singularities of
the forward electron-atom scattering amplitude
in the complex plane of the energy E of the in-
coming electron. The interest in the analytical
structure of the amplitude originates from the
fact that all the singularities in the E plane con-
tribute to the dispersion relation which was re-
cently carefully checked by using modern experi-
mental and theoretical data. ' '

Let us consider electron scattering by the
simplest hydrogen atom. The amplitude for
t. +.H forward scattering has a cut on the semi-
axis E - 0 and a pole at the binding energy E = E
=-0.76 eV of the negative ion H . Both of these
singularities are similar to those for the case of
potential scattering.

The behavior of the amplitude on the real en-
ergy axis for E &E has been discussed in Refs.
6-8. It was demonstrated that the amplitude is
regular up to the atomic binding energy E =E,
= -13.6 eV. At this point the amplitude is singu-
lar, the singularity being the result of the pos-
sible exchange between the atomic and incoming
electrons. Singularities of this kind are well
known in nuclear and elementary-. particle physics.
However, the structure of the singularity at the
atomic binding energy is quite specific as a re-
sult of the long-range nature of the Coulomb po-
tential.

To clarify it let us suppose for a moment that
the mass of the photon has some small finite
value X. The Coulomb potential in this case has

the form (-e'/r)exp(-p~), where tt, =ch/8. Then
the exchange diagram in Fig. 1(a) has an ordinary
pole' at the binding energy of the atom E =E,
= -h'z'/2m, E, &E,. All of the rest of the ex-
change diagrams have rather complicated Landau
singularities on the semiaxis E -E, = -5'(tr+ tt)'/
2m &E,.' When we proceed to the limit of zero
photon mass, A. -0, the pole at E =E, and the
pight edge of the Landau singularities at E =E,
move to the same point E =E„ that is, the singu-
larities concentrate at this point. Therefore the
behavior of the e+H scattering amplitude at E
=E, (and in the region E -E,) is a priori unknown.

First, in Ref. 10 in the static exchange approxi-
mation and in Refs. 6 and 7 in the second Born
approximation it was demonstrated that the non-
Born part of the scattering amplitude is singular
at the point E=E,. The trouble, however, is that
all of the exchange diagrams are singular at this
point. ' In this work we succeed in summing them
precisely. It is convenient to start from the dia-
gram presented in Fig. 1(b). The analytical ex-
pression for it is (e = k = m = 1)

g, (k) = -(2~) 'J (4s/q') q „'(k —tI) d'q; (1)

In (1) k =(2E) ' denotes the momentum of the in-
coming electron, q is the transferred momentum,
and p„(p) =8m'I'(p'+1) ' is the Fourier com-
ponent of the ground-state wave function for the
hydrogen atom. We are interested in the ampli-
tude behavior in the limit k'+1-0. Let us scale
the integration variable: j-Q=(k'+1) 'q. Then
(1) transforms into the following expression:

g (k) = -16& 2(k +1) 'J Q '[1-2k Q+(k'+1)Q'J 4d'Q= ~3(k'+1) '+higher-order terms, (2)

We can see that g, (k) has a third-order pole at k'
+1 =0. In calculating the numerical coefficient

in (2) it is possible to neglect the term pro-
portional to Q' compared with k Q in the denom-
inator of the integrand. It is significant that the
same result may be obtained for an arbitrary
diagram of the exchange amplitude. In our ap-

proach both electrons in the intermediate states
are described by plane waves. Hence every en-
ergy denominator of an arbitrary diagram t for
example Fig. 1(c)J is tluadratic in the momenta
q„... , j„transferred during the Coulomb interac-
tion. It is easy to find that in the vicinity of the
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FIG. l. Some Feynman diagrams describing the ex-
ch~~~e amplitude of e+ H scattering. The solid line
represents the propagation of the free electron. The
double line corresponds to the ground hydrogen-atom
state. The wavy line describes the Cou1.omb interac-
tion.

Here P,. is a linear combination of Q„.. . , Q„
and A. , is quadratic in the same variables. The
representation (3) shows that about the point k'
+1 =0 all the items quadratic in transferred mo-
menta are negligible compared with the linear
items. Consequently the well-known eikonal ap-
proximation" gives the exact asymptotic behavior
of the exchange amplitude. This is a rather sur-
prising result. Usually the eikonal approxima-
tion is applied when the energy of the incoming
particle is sufficiently large. '

The expression (3) permits us to show that each
exchange diagram has a third-order pole at k'
+1 =0. In order to sum the diagrams it is con-
venient to pass to the time description of the
process using the formula

point 0'+ 1 = 0 every denominator becomes small
for small transferred momenta q;S!k'+1!,
i =1, . . . , n. Consequently the region of small
transferred momenta is very essential. In order
to consider this region in detail it is convenient
to make the scaling substitution j;-Q, =(k'+1) 'q;.
Using it we reduce the expression for every en-
ergy denominator F.„j=1,... , n+1, to the follow-
ing one:

E, = —2(k2 + 1)!.1 - 2k P
g

+ (k + 1)A g ) ~

E„'=—i J, exp(-it, E, ) dt&.

Since E, (in the eikonal approximation) is linear
in the transferred momenta q„.. . , q„, the time
representation permits us to evaluate the inte-
grals over all q;. Consequently one obtains an
expression for a diagram where only the inte-
grals over different intervals of time remain.
Simple algebraic transformations permit the
representation of the sum of all exchange dia-
grams in the nth order (n) 2) of the perturbation
theory as

Ia) 2* f„.~ f='d~f*s, , ', ,
~f (,', ,' *—„—'—,)-d.

"

1

1 1 1 1x —— —— t,(t —t,) exp[it (E, ——,'k')1+ higher-order terms .kt k(t —t,) kt kt,

Summing g„(k) in (4), we find the expression for the exchange amplitude:

g(k) =g" (k) +higher-order terms;

eug" (k) =g, (k) + 2x dt dt, dt, —— —— t,(t t,)
0 0 0 kt k(t ti) kt kt2

x exp it(E, --,'k')— (5)

Here g))(k) is the contribution of the diagrams of Figs. 1(a) and 1(b) which coincides with the well-
known Born-Oppenheimer amplitude. These diagrams are easily calculated either directly or in the
eikonal approximation with, of course, the identical result. Representation (5) has a, clear physical
interpretation. . The exchange process lasts the interval t. During this time both electrons are moving
rectilinearly with the velocity k. The exponent in (5) includes the usual eikonal expression, the classi-
cal action calculated for rectilinear trajectories. The first multiplier of the integrand is simply the
incoming-electron-atom interaction potential. Analogously, the second multiplier describes the out-
going-electron-atom interaction. The multipliers t, and t - t, arise from the transformation of atomic
wave functions into time representation.

After simple calculation we find from (5)

g(k) =(32/e)(k'+1) '+higher-order terms.
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g(k) =@~(k) +higher-order terms;

g (k) = —(k2+1) '- —(k2+1) 2 + — — (k'+1)
32 2, 16 2 2 1 4& 167
e 3e e 3 15

Earlier' it was shown that the Born-Oppenheimer amplitude has a third-order pole,

g (k) = ~(k'+I) '-~(k'+I) '-2(k'+1) '

It was a general belief that such an unusual behavior is a peculiar feature of the Born approximation,
which is equal to the sum of the graphs in Figs. 1(a) and 1(b). We have shown that the pole behavior
is inherent to every exchange diagram. It should be noted that the difference between (7) and (8) is
prominent. In particular the signs of the residues are opposite.

Let us consider now the contribution from the pole at 0 +1 = 0 to the dispersion relation for the for-
ward e +H scattering amplitude. The structure of the amplitude singularities in the complex energy
plane discussed above leads to the following dispersion relation (DR):

1 "(2E')'i' o,(E'), d
ReF(k) —fF, —. . .i dE' —,i = u(k) .

Ws

(9)

Here e =2.718. . . .
The eikonal approximation permits us to prove the existence of the multiple pole (6). To calculate

the values of the coefficients for (k'+1) ' and (k'+1) ' terms in the amplitude it is necessary to ex
pand the integrand for each diagram !see, for example, formula (2) corresponding to the diagram of
Fig. 1(b)] in powers of k'+1 with an accuracy to the second order. In this way we find corrections to
the simple eikonal expression (5). This calculation is sufficiently complicated and therefore cannot be
described in detail within the framework of this paper. The final expression for the pole term in the
exchange amplitude is

Here E(k) =f(k) ——,'g(k) is a, linear combination of
the direct and exchange amplitudes constructed
so that the optical theorem for it is fulfilled. The
third and fourth terms of the left-hand part of
expression (9) are connected with the cut on the
right semiaxis E -0 and with the pole at the bind-
ing energy of the negative ion H . The function
u(k) in (9) includes the singularities in the ampli-

~ ~ ~ f ~ ~ ~ ~ ~ ~ 4 ~ ~ ~
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FIG. 2. The solid line represents the function u& (k),
Eq. (10). The dashed line represents the left-hand part
of the DR, Eq. (9), calculated in Ref. 5. The dotted line
is the Born approximation uGK(k), Eq. (11).

! tude which appear as a result of the possible ex-
change. If one assumes that the pole (7) is the
only singularity of the latter type then the ex-
pression for u(k) reduces to the following one:

(10)u~ (k) = ——,
'

g~ (k) .
The DR (9) was first considered for e +H scat-

tering by Gerjuoy and Krall. ' They assumed that
the function u(k) in (9) is determined by the Born
amplitude,

+G K(k) 2 g B(k) ~

The functions u~(k) and u&K(k) as well as the
left-hand part of the DR (9) obtained by Heer,
McDowell, and Wagenaar' are presented in Fig.
2. Note that the curves for u~(k) and the left-
hand part of the DR are in qualitative agreement
in the region k')1 where their signs are equal.

The quantitative difference between them for k'
& 1 can be caused by two reasons. Firstly, the
above consideration shows that besides the multi-
ple pole other singularities of the exchange ampli-
tude may exist on the semiaxis E ~E, = -0.5.
Secondly, the available data on the e + H scatter-
ing cross section for intermediate energies are
not quite satisfactory. It was pointed out' that
the variation of the cross section affects sub-
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stantially the left-hand side of the DR (9) for
small energies.

One of us (M.Yu. K.) is grateful to Professor
I. B. Khriplovieh for the discussion of the present
results.
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