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The understanding of the origin and also of the
small violation of the I b, I I= —, rule in nonleptonic
weak processes as well as those of the Okubo-
Zweig-Iizuka (OZI) rule' is one of the persistent
problems of particle physics. The @CD short-
distance correction to the W-exchange diagram
was found unable" to explain simultaneously the
I LI I= —,

' rule and the Cabibbo-unsuppressed
charmed-meson decays. The entirely opposite
claim that nonleptonic physics is essentially de-
termined by long-distance dynamics also exists. '

Although it does not work for the K mesons, it
has long been recognized' that one can impose
I b, I I= 2 constraints on the ftvo body hype-ron weak
nonleptonic vertices, by incorporating essentially
the color singlet nature of hadrons into the quark
model wave functions. This observation is indica-
tive of a close link between the possible origin of
the l AI l= 2 rule and the qqq structure of hyperons.

The purpose of this paper is to add a new point
of view regarding the origin of the I b, I I= —,

' rule
and its violation, and we argue that the presence
and violation of the OZI rule in hadron physics
share exactly the same origin. We assert that
the observed approximate IAI l= —, rule is a re-
flection of the existence of an exact )AI I= & rule
which holds for certain asymptotic two body had--
ronic weak matrix elements involving ground-
state hadrons. By applying a soft-pion extrapola-
tion [actually only the tl, -0 limit in the infinite-
momentum frame of the parent particle instead of
the usual (q, ) „-0 limit], one can relate the
physical amplitudes to the above asymptotic two-
body weak amplitudes satisfying the exact I AI I

=
&

rule. This causes an inevitable but slight viola-
tion of the rule for physical processes, providing
an attractive explanation of why the rule is also
slightly violated. Since this conjecture is already
confirmed' for the K-meson nonleptonic processes
(as well as for their charmed counterparts' ), in
this paper we complete our assertion by deriving
the rule for the more complicated cases of bary-

ons.
In our theoretical framework, the Hilbert space

with which we deal consists essentially of observ-
able hadrons. The underlying quarks and gluons
however, control subtly the world of hadrons:
Hadrons have to obey the (mainly qq and qqq)
constituent quark level scheme and they are con-
strained severely by the presence of quark chiral
algebras involving observable weak quark cur-
rents and their charges. The successful calcu-
lation of g„(0) by Adler and Weisberger lends
support for this type of approach to hadron phys-
ics with confined quarks and gluons.

The central ingredient of our pattern recogni-
tion of the dynamical nonperturbative constraints
is the Ansatz of level realization of asymptotic
flavor symmetry' in the chiral algebras involving
the axial charges. This has produced' a correct
value of g„(0) and a good nucleon anomalous mag-
netic-moment relation k~= —k„, etc. In particu-
lar, it predicts the presence and the violation of
the OZI rule for the two particle as-ymptotic had-
ronic matrix elements of the vector and axial-
vector currents and their charges.

The weak effective Hamiltonian (in the limit
m~ -~) H~ in the standard model contains a
sizable 27-piet. For SU(3) we use the concept
of asymptotic SU(3) symmetry, ' which states that
the linearity of the SU(3) transformation is still
maintained in broken SU(3) symmetry but only
for the SU(3) multiplets with infinite momenta
It has been shown that the assumption can be
made in the presence of Gell-Mann-Okubo mass
splittings with SU(3) particle mixings. We con-
sider the asymptotic ground-state baryon matrix
elements, (B'(p, A. ) IH~ IB (p, A)), with p -~ and
helicity A. = —,'. Hereafter we suppress p and A. un-
less necessary. The SU(3) parametrizations of
(B'IH~IB) with p-~ can be carried out by using
the quark constraints, i.e., the equal-time com-
mutators involving H~ and the SU(3) charges [such
as Vxo= —i fd'x Vxo'(x), where Vxo'(x) =iq(x)y'—
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x 2'(g, +iy, )/I(x), etc.]. The most useful ones are' [H~= H-(AS=1)]

[[Hw, vEo], vrco1= —2H2/,

[H„v,.1 =0,

[[H, v„], VE-]= [[H, v, -], V„-], H=a~+H~t.

For various (B'IHIB&, we introduce the following abbreviations:

x,=(pla, lz'&, x,=(nla, lz'&, x, =&nla, lA&, x,=(z la„l=- &, x, =&z'la, l:-'&, x, =(AIH, I=-'&,

(1)

(2)

(3)

y, =&PIH, II"'&, y, =(nla, ll'&, y, =(&'Ia, l=-*'&, y, =&& la, l=-* &, y,=(AIH, I=-*'&, y. =&=- la~lfl &,

~,=(A'la~I&'&, ~.=(A'Ia I&'&, ~.=&A'IH, IA&, z.=(A la~I», ~.=(I' la~I=- &, z.=(I'Ia~l=-'&,

w, =&A'lamell"&, w, =(A'IH~Iy'&, w2=&A IH~II' &, w, =(I'la~I:-*'&, w, =(I' la~I:-* &, w, =&:-* la~In &.

We sandwich Eq. (1) between the following asymp
totic hyperon states: (i) (pl and I Z'&, (ii) (nl and
IZo&, (iii) (nl and IA&, (iv) (Z I and I" &, (v) (ZoI
and I:. '&, and (vi) (A'I and I

" '&, and use asymp-
totic SU(3). Then the following four sum rules
among the x; (i =1, . . ., 6) are obtained in addition
to the two relations automatically satisfied by T
invariance: x, +~3x, —2x, =0, - ~3x2+x, +2x, =0,
—2x, +x, +~3x, =0, and —2x, +~3x, -x, =0. Equa-
tion (2) adds nothing new. However, between

I and I
&'& and &Z I and IP&, Eq. (3) produces

V 2x, -W2x, -x, +W3x, =0 and W2x, +x, -W3x,
-v 2x, = 0, respectively. An inspection of these
six asymptotic SU(3) constraints reveals that,
among the (B,'I H2 I B,& with p -~, only thl ee are
independent and they can be identified with d~,

f2/, and $1 where d2, and f2, represent the two in-
dependent octet [H(8)] couplings and $ the 27-piet
[H(27)] coupling. If we again insert Eqs. (1) and
(2) between the asymptotic decaplet states, (vii)
&A+I and IF' &, (viii) (A'I and II'&, (ix) (A I and
II' &, (x) &I' I a,nd I:*&, (xi) &I"I and I:""'&, »d
(xii) (" &

I and I
f1 &, the nontrivial sum rules are

-w2+w4 =01 2w2 +lt 3w5 =01 —~3%2 —3wo +V 3wo
=0, and v 3w, —2w, =0. Inserting Eq. (3) between

I and I
A'& and &:-*

I and I 1 '&, we also obtain
w, +V 2w2 —v 3w2 —w, =0 and w, +v 2w4 —w5+v 3wo

=0, respectively. These sum rules imply that
&B„'Ia~I B„&with p-~ can be described in terms
of two independent parameters corresponding to
H(8) and H(27). In the same way, both (B„'IH2,
x I B& and (B,'I H2/I B„&with p- ~ can be parame-
trized in terms of bvo independent eouplings cor-
responding to H(8) and H(27). These observations
are not trivial. In the usual treatment of SU(3)
these statements ean make sense only in the ex-
act SU(3) symmetry limit, whereas the above
asymptotic SU(3) sum rules are valid in broken
SU(3) symmetry.

We now demonstrate that the Ansatz of level

realization of asymptotic SU(3) symmetry implies
that the 27 parts of (B,' I H2, I B,& and (B„'I H2, I B»&
vanish, &B,'IH2, IB»& =(Blo'I H2/I B,& =0, and there
exist SU(6)-like relations among (B,'IH2/I B,& and
(B»'IH2/I Blo&, but all only in the asymptotic limit
p- . We now consider another valuable quark
constraint:

[[H„A,-],A,.] = [[H„,V,-],V,.], (4)

Bere, k denotes the fractional contribution of the
ground state to the algebra [A,+,A, —] =2V, and
0 = 0.6. Denoting the ground-state contribution
to each case (i)-(vi) as G(j) (j = i, ii, . . ., vi) and

where V,~ are the isospin operators and &,~ the
axial charges. We insert Eq. (4) between the hy-
peron states (B,'(p)I and I B,(p)& with p- ~ for the
combinations previously considered, (i)- (vi).
On the left-hand side of Eq. (4), among the set of
complete single-hadron intermediate states in-
serted between the factors H~, A„-, andA„+, we
distinguish the contributions coming from various
levels of hadrons. We demand that the fractional
contribution of each level to Eq. (4) should be
(asymptotica, lly) invariant under the SU(3) rota-
tion produced by the variations (i)-(vi), i.e. , the
flavor symmetry in Eq. (4) should be asymptoti-
cally secured leveluise. We now look at the real-
ization at the ground-state (~' octet and &' de-
caplet) level. We define d -=(& IA, -

I A(p)&, f
=-&&'IA, -

I &'(p)&, a = &I"IA,- I
I"(p)&, »dl =&&'I

xA, -
I I'"(p)& where p- ~. The same level-real-

ization Ansatz applied for similar algebras, [A,+,
A„-]=2V„[[j2"(x),A, +],A„-]=2j,"(x), etc , al-.
ready fixed' the ratios of d, f, g, and I2 consis-
tently:

(2I )1/2 f 2 (2y)1/2 g 1 (2t )1/2

rg =+ x/u.
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the rest (i.e., higher-level contributions) as H(j ) we obtain

G(i) +H(i) =x, +&2x„G(ii) +H(ii) =~2(X, +&2x,), G(iii) +H(iii) =0, G(iv) +H(iv) =x, + ~2x„
G(v) +H(v) =&2(x, +v 2x,), G(vi) +H(vi) =0.

G involves the weak matrix elements x;, y;, z, , and w; as well as the strong couplings, d, f, g, and h.
For example,

G(i) = (pf ' —~3df + pd'+2h')x, +[(p)" f—(p)'"d]fx, + [(p)"2f —(p)"'d ]dx,

+[(p) f—(y)' d]hy +(Tf —~~3d —2g)hz, —v 2fhz —v 2dhz —v 2h2w .
The cases j =iii and j =vi show that the level-real-
ization pattern should be 0+. . .= 0, which in turn
implies x, = —~2x, and x4 = —~2x, . These are the
I & &I = p rules for the m'ymptoti c &B,'!H, ! B,&

vertices and they imply that (B,'!H~(27)! B,)'s
vanish, i.e., g-0 as p-~. Thus the x s can now

be expressed in terms of two independent parame-
ters (corresponding to d~ and ftN couplings), for
example, x2 andx„asx, =-~2x2, x, =- g,
+W3x, )/W2, x, = (x, +~Sx,)/2, x, = (~3x, —x,)/2.
This is the asymptotic octet rule for the (B,'!H„
x I B,). The realization patterns require that all
G's vanish. The complete octet dominance over
&B„'!H,l B„)in the limit p-™can also be de-
rived, by inserting Eq. (4) between (B„'I and

I(vii) =~2h'x, +V 6h'x, + (f —~3d —2g)hy, +v 2ghy,

We see that the realization pattern is again 0
+...=0. Then all the right-hand sides of the sum
rules, as well as I(j) 's (j = vi i, . . .,xi), must all
vanish. Combined with the asymptotic SU(3) sum
rules involving m 's, we now find that (B»'!Hm,

x!B„)can now be parametrized in the p- ~ limit
by one parameter, i.e. , ~, = —W2w „w, = —v 3u „
~, =-~2~» m, =2~„and w, =~3&@,. This is the
asymptotic octet rule.

We now show that (B,'I H~ I B») =(B„'IH~l B,) =0.
If we sandwich Eq. (1) between (B,'I and! B„),
then the ~; 's are expressed linearly in y;. Con-
versely, the same procedure between (B»'! and
!B,) expresses they&'s linearly in z;. We now
insert Eq. (5) between (B,'! and! B») and apply
the level realization. By just studying the real-
ization pattern suggested by the right-hand side
of Eq. (5), we find the following: We first see
(B,'!H~(27)! B») =0 as p- ~, i.e. , y & and, there-
fore, z& also satisfy the octet rule and, in parti-
cular, z, =- (s'!H~!A) = 0. Then, to accommodate
z, =0 in the realization scheme the (B,'!H~ (8)
x!B»)'s are required to vanish, namely y, =z, =0,
i =1, . . ., 6. The result obtained so far is indepen-
dent of the structure of other realization con-
straints such as G(i) =I(j) =0 and will be satisfied

! B») for the combination (vii)-(xii). Correspond-
ing to G(i) and H(i) we introduce I(i) and J(i), re-
spectively where i =vii, ... , Xii. We then obtain

I(vii) +J(vii) =24 2(v 2x, +~,),

I(viii) +J(viii) =2~2m, +5w, -v 6m„

I(ix) +J'(ix) =v 2(- W3cu2+v 2u) ),

l(x) +J(x) =~2u), +w„

I(xi) +Z(xi) =v 2(V 2~, +~,),

0+J(xii) =0 [i.e. , I(xii) =0].

I(vii) is, for example, given by

+v 2ghz, +v 6ghz, +2(h'+g')w, +v 2g'w, .

also by higher-lying baryons. If we now substi-
tute the information obtained for x;, u &, y;, and

z, into the two realization constraints I(vii) =0
and I(viii) =0, the following SU(6)-like relations
are obtained:

x, =u, /~2, i.e.,
(~!H, ! Z') = (1/v 2)Q '!H~! l"),
x, = —(v 6/3)w„, i.e. ,

&~!H,l&') = -(~6/2)(&'! H~l ~'&

(6)

(7)

[[H„w, ]=[[H,v, .],v, -]. (8)

In the latter case, the fraction of the ground-state
level contribution l is found to be equal to A in Eq.
(5), Had Eq. (5) not been input, Eq. (5) could
have been derived, producing the correct value of

g„(0), gz,p„, etc. In exactly the same way, we
see that the (B'(x = v3)! H~! B(X = &))'s also satisfy

These solutions satisfy not only all the remaining
level-realization constraints, i.e. , G(j) =I(h) =0
(j =i, . . . , vi and h =ix, . . ., xii), but also all the
level-realization requirements of another indepen-
dent quark constraint,
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the asymptotic octet rule. We stress that the as-
sumption of saturation by a particular level is
never used. Had we assumed the saturation (l
=1) of Etl. (8) by the ground-state baryons, k =I
=1 implies g„(0) =~ from Etl. (5). This is the
unsatisfactory result of SU(6).

We summarize the difference between the re-
sults based explicitly on the quark wave function'
(QW) and ours. (1) Our I

& II =~ rule a.nd also the
octet rule for the Geo-body hadhonic weak vertices
hold only in the p-~ limit, but they are valid for
baryons as quell as for mesons. In QW no asymp-
totic statement has been made and the I

& II = ~
rule was not obtained for mesons. (ii) In QW,
(B,'IH I B„&=(B„'IH,I B,) =(B„'IH IB„&=0,
whereas we find only (B,'I H~I B„)=(B„'IH~ I B,)
=0 for p- ~. Furthermore, the (B„'IHs, I B„)'s
are related to the (B,'I H~I B,)'s by SU(6)-like rela-
tions at p-~, as seen from Eels. (6) and (7).
(iii) The same etluations imply that the (B, I H~

&&
I B,)'s are of pure f type at p-~. This is, at

least, compatible with the known fact that the ob-
served hyperon s-wave amplitudes prefer a pre-
dominantly f-type coupling. On the other hand,
in QW d~/f~ =-1 is predicted which makes the s
waves difficult to fit (see Pakvasa's remark in
Ref. 5).

As for the octet hyperon decays, a new calcula-
tion may be in order using asymptotic SU(3) sym-
metry and the new soft-pion technique mentioned,
to accommodate the asymptotic octet sum rules
obtained in this paper.
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