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Usince the two muons are not precisely collinear, we
use the mean angle of the two polar angles to define 6
for the event.
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Transverse rotation-group representation indices are shown to appear in one-loop radi-
ative corrections. Some conjectures are made on how such index structure generalizes to
higher orders. An unusual correlation between the absence of UV divergences in super-
symmetric theories and the equality of such indices for fermions and bosons is described.
This correlation is argued to be a fundamental indicator of higher-order UV behavior for
D =10 (W =4) supersymmetric Yang-Mills theory and D =11 (N =8) supergravity. Within
this context, the significance of O(8) triality is discussed.
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In this Letter I discuss some striking group-
theoretical features which appear in radiative
corrections as computed perturbatively for rela-
tivistic quantum field theories. These features
seem to be very general in character, and may
lead to further simplifications in the rules used
to determine the UV structure of field theories.
Although I expect wider applications, I will pri-
marily discuss supersymmetric theories in this
Letter, since their UV structure is of paramount
theoretical interest.

I shall show how radiative corrections involve
“transverse rotation-group representation in-
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dices” by giving a simple one-loop example. On
the basis of such low-order perturbation theory
results, I conjecture that higher-loop processes
involve generalized higher-order representation
indices. I also suggest a factorized form for the
dependence of higher-loop corrections on boson
and fermion indices in supersymmetric theories
such that generalized indices are a direct indica-
tor of certain higher-order effects. I observe that
these conjectures are consistent with an other-
wise unusual correlation between the equality of
group representation indices for the fermions and
bosons found in certain supersymmetric theories
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and the known cancellation of UV divergences in
those theories. Assuming the factorization con-
jecture is exact, we anticipate the results of fu-
ture multiloop calculations of UV divergences in
supersymmetric Yang-Mills theory and super-
gravity.

Even if these conjectures are incorrect in high-
er orders, they serve to emphasize some inter-
esting mathematical properties of extended super-
symmetry multiplets. Particularly notable among
these properties are the effects of O(8) triangular
symmetry (i.e., “triality”) transformations acting
on physical degrees of freedom. For D=10 (N=4)
supersymmetric Yang-Mills theory, triality im-
plies the equality of fermion and boson represen-
tation indices of all orders. For D=11 (N=8)
supergravity, triality only leads to equality for
the lowest few indices, which in fact are unequal
beyond sixth order. '

Indices! for a group representation are defined
as sums of powers of the lengths of weights for
that representation. Weights are essentially just
arrays of eigenvalues for a maximal simultan-
eously diagonizable set of group generators (i.e.,
“good quantum numbers”). For a representation
R, the pth index is

IP[R]= 22 (w,w)*2, (1)

>

winR

The norm (w, w) of a weight is defined with use of
the inverted Cartan matrix to form a metric. An
irreducible representation of a simple Lie group
consists of a “spindle-shaped” array of weights
which is completely determined once one is given
the “highest” weight in the spindle.?

To demonstrate the physical significance of in-
dices, consider a gauge-invariant current corre-
lation function evaluated to one loop. This cor-
relation function provides a very simple example
of a physically interesting UV divergence. Upon
reduction from D to d dimensions, the result is
proportional to

1,,,(q)=(=)*f(g>)[ B, @ 1°/(d - 1)
—4p D [ /y] (2)

where f(g?) is the basic one-loop integral (dimen-
sionally regulated in d dimensions)

Flg®) = [DR[FAg +F)]™,

and # is the rank of O(D - 2). The P tensors are
_essentially just projections given by

P, @=q q,-¢°g,, @, P,, = A0y =08y ®s

where g @ and g’ are the space-time metrics

in d and D dimensions. Note that ¢q,, is by assump-
tion reduced to d dimensions, i.e., only the first

d components of any momenta are possibly non-
zero. One is allowed to take d =D to obtain a

less general result. The statistics phase factor
(=)* in (2) is + 1 for bosons and -1 for fermions.
In general, of course, one must sum (2) over the
various possible virtual particles that can con-
tribute. )

The indices appearing in Eq. (2) are those ap-
propriate to the O(D - 2) representation for, the
massless virtual particle in the closed loop,
which in general might be a reducible represen-
tation. This is somewhat surprising since the
one-loop momentum integration has been rather
indelicately reduced to d dimensions, and one
might a priovi expect only O(d — 2) indices to ap-
pear. Nonetheless, the net result is expressible
in terms of O(D - 2) indices. One immediately
sees that the divergence (in fact, the entire one-
loop contribution) cancels if there are massless
bosons and fermions contributing equal zeroth
and second indices. Thus there is a correlation
between the equality of the transverse rotation-
group indices for fermions and bosons in higher
dimensions and the cancellation of UV diver-
gences.

Equalities among transverse rotation-group
representation indices for fermions and bosons
are easily found in supersymmetric theories
when those theories are formulated in their “nat-
ural” space-time dimensions. For example,
D=10 and D=11 are the natural space-times for
N=4 supersymmetric Yang-Mills theory® and
N =8 supergravity,* respectively, for which the
transverse rotation groups are O(8) and O(9). It
will be sufficient here to illustrate such index
equalities with use of these maximal globally and
locally supersymmetric models, First, however,
let us observe that generalized index equalities
for fermions and bosons are a logical extension
to higher space-time dimensions of the spin-mo-
ment sum rules satisfied by linear supermulti-
plets in four dimensions,*® with four-dimensional
results straightforwardly obtainable by dimen-
sional reduction. These spin-moment sum rules
were previously associated with the absence of
UV divergences in lowest-order perturbation
theory® (e.g., the vanishing of the Gell-Mann-Low
charge renormalization function to one loop). An
excellent review of this and related effects is giv-
en by Duff.”

Now consider the D =10 supersymmetric Yang-
Mills theory.® This model involves Majorana-
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Weyl spinors, and vector gauge fields, both in the
adjoint representation of some external gauge
group (which we may ignore for this discussion).
The physical states of these two fields form ir-
reducible representations of the transverse rota-
tion group O(8), whose highest weights are (1000)
and (0001). One could also use (0010) for the
spinor. If one computes the indices for either

of these representations, one finds 71 ¢®=71®=8,
In fact, all indices for these representations are
identical. The obvious way to see this is to note
that each of these representations consists of
eight weights of unit norm.

It is more informative, however, to note that
all indices agree for the boson and fermion fields
of this model as a result of a symmetry. The
symmetry is well-known mathematically,® but to
my knowledge it has not been previously applied
in the present physical context.® For every O(8)
representation, R,, there are two other O(8)
representations, R, and R, (perhaps identical
to R,), which are related to R, by the principle
of triality. That is, the representation R, (or
R ;) may be obtained through a cyclic permutation
(or the inverse permutation) of the first, third,
and fourth weight components of R,. Such a per-
mutation may be understood in terms of automor-
phisms acting on the group algebra. It is easily
seen that this permutation symmetry leaves the
weight metric invariant, and hence in general it
leads to a set of three representations whose in-
dices are all identical, Obviously, the two O(8)
representations for the D=10 supersymmetric
Yang-Mills theory are related by such a triality
transformation acting on their weights.

The contributions to the self-energy in (2) from
bosons and fermions identically cancel for the
D =10 supersymmetric Yang-Mills theory. An
easily established corollary is that this leads to
a vanishing one-loop charge renormalization for
that theory. I believe that this vanishing charge
renormalization may be viewed as a consequence
of the triality properties of the model, since
triality guarantees the equality of I‘®, and I‘?,
for the fermions and bosons in the theory.

I have not yet extended the result in (2) beyond
one loop for an arbitrary set of representations.
However, we can make an obvious conjecture
anticipating this extension. Let us conjecture
that the k-loop result will involve the 2kth (and
lower order) indices of all the transverse rota-
tion-group representations appearing in the k-loop
Feynman diagrams. The order of the highest in-
dex to appear should equal the maximum number
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of vertices at which the current “probes” the
space-time structure of the representation.

For supersymmetric theories, where the coup-
lings among the various fermion and boson re-
presentations are strongly constrained, it is also
quite conceivable that the net contribution to the
particular gauge-invariant UV divergence of (2)
is factorizable in all higher orders, permitting
at least one factor of Iyoon‘® = Itermion'?’ to be
extracted, generalizing the case for one loop
following from (2). I suggest that this well-de-~
fined property can be proved in higher orders
using supergraph techniques.

These conjectures on the index structure of
higher-loop radiative corrections are consistent
with known properties of the D=10 (N=4) super-
symmetric Yang-Mills theory, This model is
UV -finite through three-loop order'? in four di-
mensions [e.g., d=4 in (2)] where the current
correlation is the only independent physical UV
divergence, and it is widely believed to be finite
in all higher orders of perturbation theory. Our
factorization conjecture links this UV behavior to
the previously noted equality of fermion and boson
representation indices of all orders. Given this
link, we would understand the UV finiteness of
the theory as a consequence of the triality sym-
metry. Even if the connection is not this direct,
it is nevertheless fascinating to see such a corre-
lation between all orders of perturbation theory
(cancellation of UV divergences) and all orders
of representation indices [vanishing Iy,

- Ifermion(m] .

I now discuss whether there is a similar cor-
relation between the physical (on shell) UV di-
vergence structure of N=38 supergravity and the
generalized transverse rotation-group represen-
tation indices for the boson and fermion physical
degrees of freedom in that theory.

For the N =8 supergravity theory,* the natural
dimension of space-time is D=11, Physical states
for the model form irreducible representations of
the transverse rotation group O(9). The highest
weights labeling those representations are

(2000),
(0010),
(1001),

44 “gravitons”,
84 “formitons”,
128 “gravitinos”,

corresponding to symmetric rank-2 and antisym-
metric rank-3 tensors and a Majorana spinor-
vector, respectively.

One can now compare the higher indices for
these representations to check equality for bosons
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and fermions. Since the group is no longer O(8),
one might expect that triality is not available to

facilitate this check. However, there is a theo-
rem® that states that

IP(0(2n+1)) =2, 1°(0(2n)),

where the sum extends over all representations
of O(2r) contained in the O(2n + 1) representation
in question. Thus we may embed O(8) in O(9)
and use triality for O(8) as an aid in comparing
higher boson and fermion indices for O(9).

The supergravity O(9) representations branch
into O(8) representations as

(2000) = (2000) + (0000) + (1000),
(0010) =(0011) +(0100),
(1001) = (1001) + (1010) + (0001) + (0010).

Among the O(8) representations, we recognize
several boson/fermion pairings for which all in-
dices are guaranteed to be equal by triality, We
may choose these to be {(1000), (0001)} and
{(0011),(1010)}. However, not all the representa-
tions allow pairing in this fashion. Hence the
overall matching of the O(9) boson and fermion
indices will occur if and only if the indices agree
for the following sets of O(8) representations:

(2000) + (0100) + (0000) =bosons,

(3)
(1001) +(0010) =fermions.

One immediately recognizes these sets as the
Kronecker products

(1000) X (1000) = (2000) + (0100) + (0000)
(1000) X (0001) = (1001) + (0010).

Since the second terms on the left-hand sides
form a boson/fermion pair whose indices match
by triality, one might expect some, if not all,
of the indices for the two products to agree.

Indeed, using several simple theorems,' one
can see without computing any of the weights that
the zeroth, second, fourth, and even the sixth
indices for fermions and bosons are equal. Un-
fortunately, the agreement ends there. All O(9)
indices higher than the sixth are unequal for the
fermions and bosons of supergravity in 11 dimen-
sions.

For example, by explicitly computing the lengths
of the 64 weights for both bosons and fermions in
(3), one finds that

I¢®2[(1000) % (1000)] =2816

while
1®)[(1000) x (0001)] = 2624,

One may easily check these, and all other indices,
by noting that the boson representations in (3)
consist of 48 norm-2, 8 norm-4, and 8 norm-0
weights, while the fermion representations con-
sist of 32 norm-3 and 32 norm-1 weights.

A priorvi, we expect that the eighth indices will
arise when computing the UV divergences in on-
shell invariant amplitudes for two-two scattering
at the three-loop level. For example, as one
can easily see, there are eight vertices in sev-
eral diagrams contributing to such a scattering
process. In supergravity, it is well-known'! that
this is the lowest-order process for which on-
shell infinities are possible.

If the conjecture regarding the index structure
of higher-order radiative corrections is exact,
we would expect the N=8 theory to be infinite at
the three-loop level, since the eighth indices for
fermions and bosons disagree. It is important
to see if these simple group-theoretic considera-
tions are actually supported by explicit three-
loop calculations for the model. Such explicit
calculations are being seriously considered.
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The AB = AL = 2 processes hydrogen-antihydrogen oscillation and pp —~e*e* or p*p*
(double proton decay) in grand unified theories are examined. Although these reactions
are very suppressed in the minimal SU(5) model, their rates may be significantly in-
creased by appending a 50-plet of Higgs scalars. In that case relatively light color sex-
tet and doubly charged colorless scalars might mediate pp—~ e*e* or p*u* at a rate ob-
servable in ongoing proton decay experiments. Consequences of this scenario are dis-

cussed.
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Several years ago Feinberg, Goldhaber, and
Steigman' (FGS) suggested the possibility of hydro-
gen-antihydrogen oscillations H=p+ e~p+ ¢ = H,
via AB =AL =2 interactions (B =baryon number,

L =lepton number). In their scenario (neglecting
CP violation) the linear combinations?®3

H, E—}z—(ﬂ +H), (1a)
H,= 7@ -H) (1b)

are mass eigenstates with mass difference 6
=|my_=my,l. (Note the similarity with the K-
K ¢ system.?) An initial H state, free from exter-
nal intevactions, will oscillate into H and back to
H with a period*

Tuf=21/0 @)

Of course, 0 must be very small. Indeed, from
astrophysical data on y-ray flux (which would be
perturbed by H—~H followed by annihilation) FGS
set the rather stringent bound*

6<2x10"% eV, (3a)
(3b)

The same AB =AL =2 interaction that would al-

Tya> Tx10%° yr,

1708

low H-H oscillations could also give rise to the
reaction pp —~e’e™ in nuclei, which we shall refer
to as double proton decay. FGS estimated that
the lifetime for this nuclear decay mechanism
was approximately related to T 5 by*

T(pp~ete*)=(3X10*yr ™) Ty 4

So, experimental searches for proton decay (em-
ploying nuclei) can be used to bound Ty via Eq.
(4). They give! Ty = 6x10'2 yr, which is about
two orders of magnitude better than the astro-
physical bound in Eq. (3b).

The AB =AL =2 interactions required for H-H
oscillation and double proton decay arise quite
naturally in grand unified theories, which are
better known for their AB =AL =1 interactions
and prediction that the proton decays (e.g., p—~7°
+e*). In the minimal Georgi-Glashow SU(5) mod-
el, AB=AL =1 superweak interactions are medi-
ated by superheavy gauge bosons with masses
m ¢=2x10™ GeV. They give rise to a predicted
proton lifetime of about® 7,~ 10%°-10% yr (it
scales like m ¢*). In such a theory AB =AL =2 re-
actions can obviously occur as second-order su-
perweak effects; but they are then highly sup-
pressed. In the minimal SU(5) model T i <m *
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