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Exact Solutions to the Feigenbaum Renormalization-Group Equations for Intermittency
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Exact solutions to the Feigenbaum renormalization-group recursion relation, and the
associated eigenvalue equations describing deterministic as well as stochastic perturba-
tions, are found for the case of intermittency. These solutions are generated by a re-
formulation of the one-dimensional iterated map that exploits its topological equivalence
to a translation. Direct resummation of series expansions gives the same results.

PACS numbers: 05.40.+j, 02.50.+s

The study of bifurcation and the transition to
chaos has attracted intense interest recently,
and considerable progress has been made. The
three most commonly discussed scenarios, ' as-
sociated, respectively, with the works of Feigen-
baum, ' Manneville and Pomeau, ' and Ruelle and
Takens, ' are based on three different types of
bifurcations: the pitchfork, tangent, and Hopf
bifurcations. The much discussed period-doub-
ling route to chaos is based on the pitchfork bi-

furcationn.

The tangent bifurcation, on the other hand, of-
fers a different route to chaos via intermittency.
In this scenario, intermittency is a precursor to
periodic behavior. It consists of long-lived
episodes of nearly periodic behavior, the dura-
tion of which becomes arbitrarily long as the
transition, via a tangent bifurcation [Fig. 2(a) ],
is approached.

Recently, Hirsch, Huberman, and Scalapino, '
following the initial ideas of Manneville and
Pomeau, proposed a detailed theory of intermit-
tency. Scaling relations for the length of laminar-
ity in the presence of noise were established"
by considering a Langevin equation describing
the map near the saddle point, and using the
Fokker-Planck techniques to determine the time
of passage. Very remarkably, Hirsch, Nauen-
berg, and Scalapino' later found that the same
results can be simply explained by using the
same functional renormalization-group equations
first proposed by Feigenbaum in his study of
period doubling —with a mere change of boundary
conditions appropriate to the tangency condition.
Thus the renormalization group provides a uni-
fied and elegant approach to both period doubling
and intermittency.

The renormalization-group approach as formu-
lated by Feigenbaum postulates the existence of
a universal map, obtained by repeated composi-
tions and rescalings of the original map, at the
onset of chaos. The rescaling factor needed to
generate the universal map yields one universal
exponent. Eigenvalues describing the rate at
which perturbations of this map grow provide the
others.

To find the spectrum of eigenvalues and corre-
sponding eigenfunctions, Hirsch, Nauenberg, and
Scalapino used series-expansion techniques. In
the simplest z =2 case they were able to sum the
series and obtain a closed-form solution to the
universal function. However, the universal func-
tion for arbitrary z and all eigenfunctions were
only computed to the first few orders.

We have found that it is possible to obtain not
only all the exponents for intermittency, but also
closed-form results for the universal functions
and all eigenfunctions corresponding to determin-
istic as well as stochastic perturbations for arbi-
trary z. This was achieved by a simple trans-
formation that recasts the map near a tangent
bifurcation into a simple translational map x,.„
=x,. +b, with b a constant. Direct resummation
of series expansions corroborates our results.
Whether this technique will prove to be of gen-
eral utility remains to be seen, but the remark-
able simplification it leads to in the renormaliza-
tion-group study of intermittency induces us to
believe that it may well prove a useful tool in
the study of other dynamical transitions.

The tangent bifurcation as it occurs in iterated
one-dimensional maps is illustrated in Fig. I.
Here the map f(x) =rx(1 -x) and its third iterate
f"'(x)=f(f(f(x))) are shown at r =r, =1+@'8. For
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(3)
Xn+)

FIG. 1. The third-iterated map f ~ & (x) at x3.

f"(x) =x(l+ux' ') +0(x'),

where u is the coefficient of expansion. The ex-
ponent z determines the "universality classes. "
Most commonly z will be equal to 2. Here we
keep it general with the understanding that

x' '= ~x~' 'sgn(x).
The universal map f*(x) has a power-series ex-
pansion in x whose two lowest-order terms
match the right-hand side of Eq. (I). The map
fur thermore satisfies

(2)

f*(f*( )) = 'f*( ),

r & r„ f ' (x) has two unstable fixed points, at x
=0 and x =(r - I)/r. These are the unstable fixed
points of f(x). As r passes through r, (see Fig.
2(a)], f '~(x) acquires six new fixed points, three
stable and three unstable. The three stable fixed
points are the three elements of a stable period-
three limit cycle of f(x). Even though the map
has no stable period-three cycle when ~ ~ x„ it
is evident fFig. 2(b)] that under repeated itera, —

tions of f ~"(x), x s spend several iterations in
the immediate vicinity of the points of closest
approach to the 45' line. This behavior corre-
sponds to orbits under f(x) that look nearly pe-
riodic for a sizable number of iterations, i.e. ,
they almost repeat themselves every third itera-
tion, but eventually slip out of this pattern, and,
shortly thereafter, establish another pattern of
near periodicity. This sequence of long-lived
episodes is the phenomenon of intermittency.

To study the transition to periodicity of order
n we consider the nth iterated map in the im-
mediate vicinity of one of the n points at which
it achieves tangency to the 45' line at the transi-
tion. Shifting the origin of coordinates to that
point, we have for the map at tangency

(3)
Xn+I

FIG. 2. (a) Tangent biAxrcation near ~3." (b) Slow
passage through the channel region.

where o. is the rescaling factor mentioned ear-
lier. If we add a small perturbation eh q(x) to
f*(x) then the composition of f,(x) =f *(x) + eh q(x)
satisf ies

f, (f,(x) ) = n 'f *(nx) + e(x/n)h, (nx) +0(c') (4)

when the eigenfunction h q(x) satisfies

f+'(f *(x))h, (x) +h,(f*(x)) =(~/n)h, (nx). (5)

There will actually prove to be a spectrum of
eigenvalues A. and corresponding eigenfunctions
h z(x). Stochastic exponents" are associated with
the rate of growth of stochastic perturbations of
the form gg~ (x), with ( a. random variable con-
trolled by a probability distribution of unit width.
Here the eigenfunctions satisfy

f*"(f*(x))Z, ,'(x) +g, '(f *(x))

=(&, /n)'g~ '(nx) .
Consider now the following recursion relation:

G(x') = G(x) —a
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with G(x) a function to be determined shortly.
Iterating this recursion relation we have

Replacing a by (z -1)u in Eq. (11) we have

f *(x) =x[1 —(z —1)ux' '] '/" (12)

G(x ") = G(x ') —a = G(x) —2a . (8)

The form we need is G(x) =x ' ', with

2&/(a - z) (10)

Note that here the quantity z is arbitrary. Thus,
a function satisfying Eq. (3) is obtained by re-
casting the recursion relation Eq. (7) into ex-
plicit form. Using G(x) =x &' '& we obtain

x =y*(x) =(x- '-' —a)-""- .

We can generate the universal map for intermit-
tency by choosing a G(x) for which a rescaling of
x yields the original recursion relation Eq. (7)
from the iterated recursion relation Eq. (8).
Such a function satisfies

G(x) =2G(~) .

2P-8 +1l(z -]) (14)

The associated eigenfunction is obtained by re-
casting Eq. (13) into an explicit recursion rela-
tion. Solving for x' in terms of x to order & we
obtain

It can be verified explicitly that f*(x) in Eq. (12)
satisfies Eq. (3) and reproduces the correct
power-series expansion. Furthermore the scale
factor o. given by Eq. (10) is correct.

We now consider the effect of a perturbation to
G(x) in Eq. (7). Our new implicit recursion re-
lation is

&+EH(x') =x ' '&+eB(x) -u(z -1). (13)

If H(x) =x ~, then iterating the recursion relation
Eq. (13) a.nd rescaling by o. as given by Eq. (10),
we obtain our original recursion relation except
that the coefficient & has been increased by the
factor A. , where

x'=x[1-u(z —1)x' '] ' ' " — [x ' " -u(z —1)] ' " "(x ' —[x " "-u(z —1)]' " ")+0( ')z —1

J'+(x) — a,(x) + O(~') .

The eigenfunction h &„(x) has been normalized so that its lowest-order term in x is x" ' ~. If we want
an eigenfunction corresponding to a shift from tangency, that lowest-order term must be I, and so we
must choose p =2z —1, which means than A, in Eq. (14) is equal to 2' ' ". This matches with the rele-
vant eigenvalue of Hirsch, Nauenberg, and Scalapino. '

The stochastic eigenfunctions are variants of the nonstochastic ones. They are

2(x) —(I/u&I)! x -(~ &) u(z 1)] &&/&+ &&(x ~ [x «&& u(z I )]~/&8 &&)
X.g

(xt'u~)2z-&&([ I u(z i)xg-&]-&s/&s -&) [I u(z 1)xg -&]- &2z -&&/&z -&&j (18)

with

The lowest-order term in g~
' is x" '~. If we

want that term to be a constant we must choose
@=3' -1 in which case A., in Eq. (17) is equal
to 2&'"&~'&' '&. All these results can also be ob-
tained directly by resumming the series expan-
sions

The fact that a reformulation of the recursion
relation leads to an immediate and complete
solution of the renormalization-group equations
for the iterated map near a tangent bifurcation
is highly intriguing. Whether or not this kind of
reformulation proves useful in the study of other
transitions in dynamical systems remains to be

! seen. It certainly deserves to be considered as
a viable approach.

This complete set of exact solutions provides
a rare laboratory where ideas and theories can
be experimented with and tested. The underlying
mathematical structure, physical implications,
and experimental consequences are still to be
ruminated. However, since the method employed
here depends crucially on the fact that the map
for intermittency is topologically equivalent to a
translation, most likely it will not prove to be
fruitful for the study of period doubling.
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