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A powerful method is presented for solving systems of nonlinear equations such as
those occurring in the Landau theory of phase transitions, in the Higgs mechanism of
spontaneous symmetry breaking, and in renormalization-group studies of critical phe-
nomena. As an illustration a ferroelectric phase transition in perovskites is considered
with the most general free energy of sixth degree. A special case is a fourth-degree
potential which corresponds, e.g., to an SO(7), adjoint representation, Higgs problem.

PACS numbers: 05.70.Fk, 11.15.Ex, 12,10.-g, 64.60.-1

Systems of nonlinear (polynomial) equations oc-
cur often in physics. For example, such equations
occur in the Landau theory of phase transitions
and in the Higgs mechanism of spontaneous sym-
metry breaking. The solutions determine low,
broken, symmetries. In a renormalization-group
approach to critical phenomena these equations
are fixed-point equations. The solutions and their
stability determine critical behavior of a physical
system. Many papers have been devoted to a
general study of these equations.!™*

The aforementioned equations,

J@)=0, (1)

transform as a vector under the action of a group
R. That is, for every transformation 7 in the
group R we have

Jop)=rf@). (2)

R is an orthogonal representation (a group of n Xn
orthogonal matrices) of a physical group. R acts
on a real vector space &" spanned by the variables
Y. In the Landau theory R represents a symmetry
group of the high-symmetry phase. In the Higgs
mechanism it represents a gauge group, whereas

in a renormalization-group approach R is a group
which commutes with the renormalization-group
transformations.

It was suggested in a work on symmetry prop-
erties of renormalization-group equations® that a
search for the solutions should be conducted by
examining in a systematic fashion particular in-
variant subspaces of the parameter space. The
basic idea is simple: Since f(¥) is a vector field
it cannot cross any symmetry hyperplane in ®”
[an i-dimensional (0 <i <n) linear subspace of &"
we call a hyperplane; a symmetry hyperplane is
fixed under the action of a group LS R which acts
nontrivially on vectors perpendicular to the hyper-
plane; a rotation axis (i=1) or a reflection plane
(i=2) is a symmetry hyperplane]. At such a
plane the components of f(}) perpendicular to the
hyperplane are identically zero. Consequently,
solutions of Eq. (1) need to be found only within
such hyperplanes of lower and lower symmetry.
An underlying physical idea is that the symmetry
of a physical problem which corresponds to a
solution is expected to be minimally broken.

Without loss of generality we will focus our at-
tention on the Landau theory of ferroelectrics in
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which case R is finite (in the case of compact
groups used in the Higgs mechanism the group
relevant to the symmetry breaking is often a
finite point group®). For some of the group-theo-
retical jargon the reader is referred to Ref. 6.

In Landau theory the free energy F(@ isanR-
invariant polynomial of degree g +1=4. The min-
ima of F(y) are determined by Eq. (1) with f(¥)
=8F (). R invariance of F insures the validity
of Eq. (2). For the sake of simplicity we will also
assume R to be irreducible.

In order to determine symmetry hyperplanes in
®" it is simplest to use little (isotropy) groups of
R. A little group L defines an i(L)-dimensional
symmetry hyperplane fixL as the subspace of R"
of all vectors left invariant by LS R (L is the
centralizer of fixL). The problem of finding all
symmetry hyperplanes reduces to the problem of
finding all little groups L. The latter has been
solved in the general case of countable groups by
the chain criterion.” A straightforward method
requires only knowledge of the characters and
subgroups of R. For infinite groups the chain
criterion is a restrictive necessary condition.

The second step is to find a projector ®(L)
which projects an arbitrary vector )= ®" onto a
hyperplane fixL. ®(L) may be constructed by us-
ing standard techniques. Using this projector we
may write a linear equation of the hyperplane fixL
by

[1-e@)]y=0. 3)

Since at a point satisfying Eq. (3) f() is tangential
to the hyperplane fixL, it follows that Eq. (1) may
be replaced by

®(L)f@)=0. (4)

Equation (3) gives n — {(L) independent linear equa-
tions for y while Eq. (4) contains the remaining
i(L) independent equations.

If we observe that fixL CfixL holds for a little
group L, L D L, it becomes apparent that Eq.
(4) will contain the solutions from fixL,. Let us
assume that there are m little groups L, s
=1,...,m, which satisfy L, DL and i(L,)=¢(L)
+1. The equationfor vectors of fixL which are
in fixL is then

e@) -eL,)]p=0. (5)

Since at such a point ¥ a component of f(}) per-
pendicular to fixL ; (in fixL) must be identically

(1-C@L)] g, @ )=g,@) =L, ANT)T

nelLyn N(L
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zero it follows that it will contain Eq. (5) as a
factor:

(L) -®L)]f@L)=g,@EL) -AL)]Y, =0,
(6)

where I have used an extra subscript L to empha-
size that Eq. (6) holds for ¢ from fixL, i.e., for
 satisfying Eq. (3). I have also defined (on fixL)
a new function gs(ﬂ) which is of degree g - 1.
Furthermore, typically m >i(L) and it is possible
to find (L) hyperplanes fixL ; whose normals span
the whole space fixL. Let us suppose that these
are numbered s=1,...,i(L). In such a case we
can replace Eq. (5) by é(L) equations (6) which
are independent for s=1,...,i(L):

g,W.)=0, s=1,...,iL), (7

where I have removed a factor of Eq. (5) as these
solutions are from fixL.

It is important that in going from Eq. (4) to Eq.
(7) we succeeded in reducing the degree of the
equations by one. However, it is clear that Egs.
(7) should also contain solutions Eq. (5) for s
=i(L)+1,...,m. Thus certain linear combina-
tions of Egs. (7) are expected to have these solu-
tions as factors, which would further reduce the
degree of the relevant equations. It is remarkable
that a search for these factorizations may also be
systematized. Namely, we observe that the hyper-
plane fixL is in fact invariant under a group N(L),
LS N(L)SR, which is a normalizer of L inR.
That is, N(L) is the largest subgroup of R which
contains L as a normal subgroup. N(L) is also a
normalizer of fixL. When it satisfies N(L)# L, it
acts nontrivially on fixL [in fact, the quotient
group N(L)/L acts effectively on fixL]. Thus
there is a group action defined on vectors ¥,
efixL. g,(y,) transform under N(L)/L as L,
under conjugation in N(L):

gs(ngL)=gs(1,) (h)’ Ls(n)En-lLsT’, (8)

where 7 is an element of N(L). Therefore, g,
transform reducibly under N(L)/L. Its compo-
nents which belong to different conjugacy classes
[L,] of subgroups L transform independently.
Each conjugacy class [Ls] gives rise to an exact-
ly IN(L)| /IN(L)NN(L )| -dimensional permutation
representation of N(L)\N(L) in N(L).

In order to remove solutions Eq. (5), s=i(L)
+1,...,m, from Eq. (7) we can now use again a
projection technique; cf. Eq. (8). For example,
an equation

) gsm®)=0 (9)
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must contain Eq. (5) (more precisely, its associ-
ated single linear equation) as a factor. Although,
two different L, and L, may lead to the same
equation, all the factors may be removed. The
remaining equations will be invariant under N(L).
Consequently, they will be functions of an integ-
rity basis of N(L).

With this the symmetry content of Eq. (1) has
been exhausted. To summarize the method: The
solutions of Eq. (1) are found by exploring sub-
spaces fixL associated with little groups L of R;
solutions associated with little groups L,, L, DL,
can always be removed from the equations, re-
ducing their degree.

As an illustration, let us consider R to be the
cubic group O, (a more detailed calculation will
be presented elsewhere®). I consider the Landau
free energy of the 6th degree:

F()=ab,+b0*+c6, +d6,°+eb 6, + f6,, (10)

where 6,,0,,6, form an integrity basis for the
ring of invariant polynomials of O,, 6 ,=¢,2+¥,2
+5% 0 =02+ P 4P, 6,=9 P +9,2+Y°, and
a,...,f are functions of thermodynamic variables
only. Equation (1), in a component form, reads
2

fi®)= 23 Ao(6h, =<0, (11)
which is a system of three quintic equations in
three variables. The quantities A, depend only
through the 6’s on .

A list of little groups of O, is known.® Let us
consider a little group C,, which consists of the
identity element and a diagonal reflection plane
perpendicular to the (1,1,0) direction. A projec-
tor ®(C,) is, in matrix form,

(/110
@(cs)=§<1 1 o),
002

and the equation of the plane fixC, is [cf. Eq. (3)]
¥, =9, which we use to parametrize the plane
fixC, as (¥;,¥,,¥5)=(x,x,2). The normalizer of
this plane is D,, with twofold axes along the (1,1,
0) and (1,1,0) directions.

Little groups which contain C; and which have
i(Ly)=1areC,,, C,;,’, C,,, C,, with the rotation
axes in the (1,1,1), (1,1,1), (0,0,1), (1,1,0) di-
rections, respectively. The associated projec-
tion operators are easily constructed and Eqs.
(5) reduce tox =2, x=-2, x=0, 2=0, respec-
tively. Equation (6) leads to functions g,(x,z) to
g4(x,2) which transform like (x - 2)?, (x +2)?, x2,
and 22, respectively. These transformation prop-

(12)

erties I use first to choose which two of the g’s
are most suitable to be kept.

D,, acts on fixC, reducibly by changing inde-
pendently z to —2z and ¥ to —x. Under this action
&, and g, remain invariant, whereas g, and g, in-
terchange when either x¥ or z changes sign. This
was expected anyhow since g, and g, correspond
to C,, and C,,’ from the same conjugacy class.
Therefore, we keep g, and g,. The group C,,
ND,, acts on fixC, by changing x to —x which is
equivalent to interchanging g, and g,. As a con-
sequence [cf. Eq. (9)] we find

[1-0(Cy,)]l 8,=3(2; -8

=xz[A, +A,(x*+2%)]=0,  (13)
which indeed contains x as a factor. Similarly,
the group C,, leads to the same equation, giving
a factor z. Consequently, we remove these fac-
tors from Eq. (13) and we keep another independ-
ent equation, for example 3(g,+£,)=0. In this
manner, the original quintic equations in three
unknowns are reduced to a system of one quadratic
and one quartic equation in two unknowns. Since
x? and 2z? form an integrity basis for D,; the equa-
tions are actually linear and quadratic in ¥ and
2% and can be solved analytically.

Table I lists all the solutions of Eq. (11). We
note that we find solutions corresponding to spon-
taneous polarization in the reflection planes. How-
ever, even at the degree 6 of the potential there
is no solution at the completely asymmetrical
point, in agreement with a general theorem.!® Al-
so, I do not discuss here conditions on the reality
and stability of the solutions found.

In order to emphasize a connection between
Landau and Higgs problems I note that for d=e¢
=f=0 the present F (), Eq. (10), is identical to
the Higgs potential for the SO(7) adjoint repre-
sentation. In this case symmetry may break from
SO(7) (0,) to SO(5)® U(1) (C,,) or SU(3)® U(1)
(C,,) but not to SO(3)®SU(2)® U(1) (C,,), which
are the maximal little groups.

It is clear that this method is easily generaliz-
able. For example, the method is actually inde-
pendent of whether R is irreducible or not and
whether R is finite or continuous. Furthermore,
the method may be easily generalized to the case
when f transforms as a tensor, not necessarily a
vector, under R; and the origin of the equations
is irrelevant.

If we are interested in the solutions of particu-
lar symmetry L (only one of the little groups in
[L] needs to be examined), this method is perfect-
ly suitable to such a task since it actually never
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TABLE I. All 125 solutions of Eq. (11) x =+ [—=8/2y+ (8 ¥/4y*—a/

n1/211/2, For each conjugacy class of little groups [L], a typical solu-
tion and the total number of solutions ng are given.?

[z @159 29 9 a;Biy ng

[0,] (0,0,0) 1

[Cyp) (x,0,0) 2a; 4b +4c; 6d +6e + 6f 12
[Cy] (,x,0) 2a; 8b +4c; 24d + 12¢ + 6f 24
[Cyl (4%, %) 2a; 125 + 4c; 54d + 18 + 6f 16

[c] (xy2,2), 2a —8bc/g+ (8ect+24dchD /g% 48

z==%[(2c+nhx? /g2

“dc+120f/g + (16ce? - 12¢df) /g%

10e + 6f +(54df %+ 8¢%)/g?

[cy] (x,y,0),

2a —8bc/g+ (8ec®+ 24dc)H /g% 24

y=%(—x2=2¢/9)1/? dc; de+6f

[C1] e

0

dg=2e+3f; h=4e + 3f.

requires knowledge of other solutions. For ex-
ample, one may search for solutions only among
maximal little groups L.?3!! In case one is in-
terested in all the solutions, it is most economi-
cal to search for them in descending fashion (with
respect to subgroup relationship among little
groups) until the number of solutions saturates
the total number of possible solutions.

In some cases we are also interested in the
stability of the solutions found. It is usually de-
termined from positivity of the operator 8 f(} *),
where ¥* is a solution. It is then obvious that it
suffices to look for the stability of §* separately
in subspaces fixL, associated with ¥*, and in
their respective orthogonal complements in ®".

The power of this method is most striking in
the cases where geometrical intuition fails. For
example, even in the case of 0, , Egs. (11) fail
to be geometrically transparent as soon as they
are written in an arbitrary coordinate setting.
However, the present method is independent of
such details. Its strength is even more obvious
in cases whenn>3. Such is the case of a six-
dimensional, X -point irreducible representation
of the space group O0,%, which I will treat, using
this method, elsewhere.
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