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Parametric decay instability cascades with one wave heavily damped are examples of
Lotka-Volterra time-dependent equation systems. These are shown to -be constant Hamil-

tonian in nature and the cascades (at least) can display Hamiltonian chaos, even without

ensemble averaging. It seems likely that sufficiently complicated systems of this type

will usually be chaotic unless very near equilbrium. These conclusions apply as well to

some chemical and population biology systems which obey similar equations.
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When an instability mode which is driven un-

stable can have its growth reversed because it is
depleted by driving (pumping) another similar
mode via a three-mode interaction, and when that

process can be repeated over several pump

modes, one can speak of an instability &a&&ade.

If the modes that are not acting as pumps are
heavily damped (as in nonlinear Landau damping

for plasma waves), the relative phases have no

interesting behavior and the equations for the&

mode actions are a particular case of the general
Lotka-Volterra interaction system, that of a
nearest-neighbor cascade. ' (This can be thought

of as a system of predation where each population

species preys only on the population next nearest
the ultimate source and is being preyed on only

by the population next further from the source. )
The general Lotka-Volterra equation system' is

as follows, for the variables n&, their natural

linear growth rates k,, and interaction parame-
ters a&& and P&.

.

dn, /dt= n)=k, n;+Qua-, .qntnt/p, .
Here rt, (which .must be positive to be acceptable)
can represent the ith concentration of, for in-
stance, species, chemical component, or wave

action. The a;& is antisymmetric, reflecting the
zero-sum nature of the ij pair interactions, while

the P& coefficients (which are positive) are the
Volterra species equivalence numbers. For
chemistry the P, coefficients are such that P,/P,
is the ratio of the number of molecules involved

in the ij interaction, and for three-wave interac-
tions all the P, coefficients are I (from the Man-

ley-Rowe relations). The original two-species

version of these equations was invoked by Lotka'
for autocatalytic reactions and by Volterra' to
explain fluctuations in fish species in the Adriatic
sea, while several authors have used them to
consider plasma-wave instability competition.

On numerical investigation, it became evident

that the time behavior could be remarkably ir-
regular. Using Poincarl surfaces of section we

found the behavior to resemble that of Hamilto-
' nian chaos, ' and then realized that the system was

indeed Hamiltonian. We recapitulate for conven-

ience an earlier treatment' of an even number of

equations, with a slight (but important) variation,
because this leads naturally to the Hamiltonian.
We define

zc,. =- P,.In(n,./ ) y,. )),

where y, is the formal equilibrium value of n, .
The y; hence must satisfy Eq. (1) with n; set
equal to zero.

For an odd number of equations the determinant
af the antisymmetric a, , is necessarily zero,
which is why we consider only even systems with

2T members and invertible a, ,'s. Note that, un-
like n s, some y s may be negative. (We re-
turn to this point later when discussing nearest-
neighbor cascades. ) It has been shown' that there
is a general Lotka-Volterra invariant, which we

eall 8 because it is in truth a Hamiltonian, given
by

If =Q, P, (n, -y, inn, +y, in~y, . ~).

We have used u; here (rather than the earlier2
w;/P, ) because this allows the following attrac-
tive form for the equations when H is expressed
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FIG. 1. Sketch showhg projection used F . 2 of

Poincare surface of section for N=2 (s = (n ))4 in 81-
n2-n& space on to a cylinder {z=log!II II =t '( —(n

gf 2 p2) ]y. Note that 4, 4' and B,B' are corre-
sponding regions with trajectories piercing each alter-
nately.

in terms of u . .

tI!,.=P, a, , &a/&u!, .

The Liouville theorem is satisfied 'ie, an encourage-
ment to apply the Darboux theorem "which
proves that the system is Ha 'lto '

Let us now turn to the cascade system. For the

,. is, ut evenwave problems of interest to us P
'

1, b
or other cascade problems, where other values
of, apply, this would only change quantitative
aspects. The same remark applies roughly to

r conveniencea, , , whose magnitude we take for co
to be 1 for all equations, so that we no h f

e uations aa t ons a&,. =5&,'„—5, , „giving

n, =k,n, +n,n -n ns-1 s s s+1

ake n„yI as formally zero for s &1, s & 2 .)We take
With the definition I-,=inn„ the equations for

L, follow immediately from Eq. (4). Note that

ys +l ys -1 ~g ~

This allows easy calculation of by, y recursion.
While the canonical variables can be obtained
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FIG. 2. Projection (see Fig. 1) of Poincare surfaces of s
and (d) 2.0.

re sur aces of section for II -H~q values of (a) 0.01, (b) 0.7 (c) 0 8
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by the Darboux procedure, the pattern soon be-
comes clear after several values of T. The gen-
eral cascade result was easy to guess and to
verify and its most convenient form proves to be

q„=L~„, p, = Q L

The canonical equations of motion follow imme-
diately when H is written in terms of q„and p„.

A point left undiscussed is that of equilibrium
values y, and what happens if they are negative.
Space does not permit a general discussion, but
we have satisfied ourseleves that for the interest-
ing cascade case (4, positive for s =1 and nega-
tive for s )1) the system will evolve to an even
system with all equilibrium values y, positive.
Providing only that a sufficient number of equa-
tions is included, any excess n, for s greater
than some even value will decrease to zero for
initially even' or odd' systems.

We have calculated some particular cases for

N =2 (i.e., four equations) quite extensively, and
will now present some results. We take a com-
mon damping v equal to 0.25 and a pump of
strength 1, so that k, is 1 —0.25 and the other k's
are -0.25, and hence y, values are, in order,
0.5, 0.75, 0.25, and 0.5.

Let us look first at the two-dimensional Poin-
eard surfaces of section for n» equal to y». (Since
y~ is also the average value' of n4 it gives the
most representative section. ) This closed sur-
face is simply connected in n, -n, -n, space and
we use a cylindrical projection as shown in Fig.
1 to display the results in Fig. 2. Close to equi-
librium the surface of section is ellipsoidal and
the points from a given trajectory lie on the inter-
section with another set of ellipsoids (quasi-invar-
iant near equilibrium) as shown in Fig. 2(a).
These are of course Kolmogorov-Arnold-Moser
(KAM) tori» sections. (Like darning a sock, a
trajectory alternates, passing one way then the
other through a surface of section, usually going
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FlQ. 3. Typical frequency spectra (a)-(c) and time behavior (for n&) (d) from the orbits of Fig. 2(d) which are
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alternatively from one curve to another. )
For rather larger values of B, equivalent to

starting farther from equilibrium, a pair of
"tear drops" form, as shown in Fig. 2(b), and
with them a chaotic belt. This rapidly develops
the now-classic microisland structure ("Poly-
nesia" or "micronesia"), and then [Fig. 2(c)]
the "stochastic sea" becomes evident and begins
[Fig. 2(d) ] to drown the "coherent continents. "

While the general progression is typical of
Hamiltonian systems, there is a significant dif-
ference from other Hamiltonian systems with
interacting -oscillators. Here the rapid growth
of chaos is linked to the tear-drop formation
rather than the resonance overlap. ' We have
as yet no useful criterion to predict this onset.

It is instructive to look at the spectra and time
behavior and so, in Fig. 3, they are shown for
various trajectories of Fig. 2(d) as indicated by
the letters. One sees the two-frequency system
expected with two degrees of freedom, and as
one approaches chaos the beat products become
more prominent. We note without comment the
qualitative resemblance between the spectra of
Fig. 3 and those of Fig. 1 of Gollub and Swinney'
for circular Couette flow.

Some implications of this work are considered
next. We have shown that the Lotka-Volterra
equations are in fact Hamiltonian and can display
(at least in our example) chaotic behavior similar
to (but not identical with) that of other nonlinear
systems with a constant Hamiltonian. It may
well be that such chaos is likely in many Lotka-
Volterra systems of sufficient complexity (T ) 2),
and perhaps more likely the larger T. Goel,
Maitra, and Montroll' discussed at length the en-
semble average of I otka-Volterra systems (and
others). It seems likely that many such systems
can, via chaotic behavior, be nearly ergodic
without the necessity of ensemble averaging.

[We say "nearly ergodic" because quite signif-
icant phase regions may be avoided by the chaotic
trajectories, as in Fig. 2(d). ]
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