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and
Kk =Zp, =1,0011m,.

H,(r,6;R) is essentially the same as the Hamilto-
nian H,(v,6;R) of I; it differs from it only in that
m, is replaced by 1. This makes it possible to
use a lower bound potential already calculated.

It can be shown by solving the appropriate ra-
dial Schrodinger equation that V(R) cannot sup-
port a bound state and consequently no bound
state of H,(R) exists. It follows that no bound
state of H; ¢’ exists. Hence Hy;,, the Hamiltonian
for the internal motion of ¢ “H in the case of finite
proton mass, can have no bound state. This
proves, for the first time, that no bound state of
e*H exists in the case when the finite mass of the
proton is taken into account.

It is intended as a next stage to apply the meth-
od to try to prove the absence of a bound state
for a system made up of muonium and a positron.

The mass of the muon is 207#, and, consequently,

the effect of the Hughes-Eckart term can be ex-
pected to be more important in this case.

I wish to thank Dr. M. Farid, and Dr. D. C. Mat-
tis of the University of Utah for drawing my at-
tention to the form of the Hamiltonian for the in-
ternal motion of e *H with origin at the electron.
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Quantum mechanical Hamiltonian models of Turing machines are constructed here on a
finite lattice of spin-3 systems. The models do not dissipate any energy and they operate
at the quantum limit in that the system (energy uncertainty)/(computation speed) is close
to the limit given by the time-energy uncertainty principle.

PACS numbers: 03.65.-w, 05.30.-d

There has been much discussion in the litera-
ture recently about the physical limitations of the
computation process and information transfer,'”'2
Early work™? agsumed that the computation
process was irreversible because of the neces~
sity to discard information, However, this was
shown to be false by Bennett.® More recently
Landauer” has stressed the importance of the
energy dissipation problem for the computation
process. Recent work®® has assumed that en-
ergy dissipation must occur, and on the basis
of this, Bekenstein® derived an upper limit of
10" steps/sec for computation speeds. However,
this work has been criticized by Deutsch'® and
Landauer.! Fredkin and Toffoli'? have construct-
ed a classical mechanical model of the computa-
tion process which dissipates no energy.

© 1982 The American Physical Society

The purpose of this note is to briefly present
and discuss quantum mechanical Hamiltonian
models of the computation process as represented
by standard Turing machines,® These models
also dissipate no energy and operate at essen-
tially the quantum limit in that the total system
(energy uncertainty)/(computation speed) = 277,
Unlike the models constructed in other work,®
the models constructed here do not use succes-
sive scattering to drive the process.

A Turing machine consists of three parts, an
internal machine part L which is capable of
assuming any one of a finite number of states, a
computation tape T infinite in both directions,
and a computation head #. T is divided into an
infinite number of cells at positions ... -1, 0,
1,... . Each cell contains any symbol s of an
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alphabet S which includes the blank. % scans one
cell at a time. In one computation step, %2 chang-
es s to some s’ in S and shifts one cell to the
right or to the left or remains where it is. The
state of L can also be changed, and s =s’ is pos-
sible.

Each Turing machine @ corresponds to a map
TGNXS-NxSx{~1,0,1}, where N is the set of
possible L states and -1, 1, 0 refer to left, right,
or no shift of 2. A computation is described by
iterations of 74 on N XS, That is, if for some
step, & is at position j and 7y(ls) =(I’s’ a), the
next step is given by 7g(I’s,) where s, is the
symbol scanned by % at position j +a. A compu-
tation halts if L is in state /, 2 scans symbol s,
and T(ls) =(Is0).

Turing machines are very slow but very power-
ful in that any computation made on any digital
machine can be done on a Turing machine, Turing
machines are also computation universal, That
is, there exists a Turing machine @, such that
Q., given both the name G (suitably encoded) of
any Turing machine @ and some expression y
on 7, carries out the same computation on y as
Gq does,

Turing machine computations are not in gener-
al reversible. However, it was shown by Ben-
nett® that each Turing machine can be extended to
a Turing machine whose computations are rever-
sible by generating a history of the computation.
Here the model is extended by addition of a
record system R containing, initially, blank
record cells at positions 0,1,... and a record
head ¢ initially at position 0. A filled record
cell contains the triple (/sj) where / is in N, s
is in S, and j denotes the position of #. As the
computation progresses a history as a sequence
¢ of (Isj) values will be generated in R as i is
shifted along R.

From now on the concern here will be with
reversible standard computations. A standard
computation begins with L in a designated state,
“1”, h and ¢ at positions 0, and all cells in T to
the left of 0 blank. Also, at most a finite number
of cells of T are nonblank and no two nonblank
cells are separated by one or more blanks. The
final state is similar except that L is another
special state.

Each computation of a step of the original
machine @ corresponds here to a record, com-
pute, and ¢-shift operation in the extended rever-
sible machine, In the record operation, the
state of L, the symbol in the cell scanned by #,
and the position of # are recorded into the blank
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record cell scanned by ¢. In the compute opera-
tion, the (lg/) triple recorded in the R cell scanned
by ¢ and the value of T4 at (Is) give the changes

to be made in the state of L, the symbol in the
cell scanned by %~, and the position of #. Finally,

i is shifted to a fresh record cell.

The overall state of a reversible machine at
the end of a computation step is given by some
(I Ajk @) where I denotes the state of L, j and &
are the positions of # and ¢, respectively, and
X and @ are expressions on T and R, respective-
ly. Let C be the set of all such descriptions of
all reversible machines.

Each machine computation corresponds to itera-
tions of a bijection T4:C - C such that for each -
(Ijke) for which @(k) =b, T(Injkg)=(1'\"j"k ¢’).
Here ¢’=¢ except at cell 2 of R where ¢’(k)
={1,2(j),7], ' =k+1, XA'=x except at cell j of T,
i'=j+a, and 1[I, \(7)]=[1,2"(5), a].

The detailed construction of the maps T is
described elsewhere.!* Here one notes that for
each standard initial state (1y000), where L is
in state 1, y is the initial expression on T, &
and ¢ are at position 0, and the R cells are all
blank, one has an orbit {7g"(1y000)|#=0, 1,...}
which is a Ty -invariant irreducible subset of C.
The orbit is finite if and only if the computation
halts. T g =identity outside of the orbits.

From now on, to avoid technical complications
consideration will be limited to a finite but arbi-
trary number J of computation steps of any
standard machine. Then N is finite, T extends
from cell -J to cell J with 2J +1 cells, R ex-
tends from 0 to J with J+1 cells, in the defini-
tion of T, one has k’=%+1 mod(J+1) and j'=3
+a [mod(J+1 or =J~1)], and C becomes a finite
set. For each y the orbit of T, at (1y005) be-
comes a finite set with N, elements.

Consider a system with a set of quantum states
which are in one-to-one correspondence with the
(Ixjk@) in C. How the correspondence is con-
structed is of no concern at present., However,
these states ¥,,,, must be orthonormal, Let 3
be the finite-dimensional Hilbert space spanned
by {‘I’z Xjqul(lkjk(ﬁ)ec}.

For each machine @ define an operator Vg on
5 by

VQ\I’lXjkll’:‘IJTQ(l)\jk‘P) 1)
for all Ixjkg. V, is unitary since T is a bijec-
tion. Corresponding to the orbits of Ty are the
orbits {¥,7|n=0,1,...,N, =1} of Vg each of
which span a subspace 3¢, of J¢. Here ¥, 7=V,"¥¢],
where ¥, =¥, ,,,,. Each i, is V, invariant and
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irreducible. Thus one has Vg=33,V,P,+1-2 P,
(the @ subscript is suppressed from now on)
where Py projects onto iC,.

‘Let A be an arbitrary fixed time interval. One
now requires that for each @ a Hamiltonian H
exists such that one has Vg =exp(-iHA/K). With
H=},H,, where H, acts only inside ¥,, one has

exp(~tHA/R) »
=Y.y exp(=iH yA/B)P +(1 -2yPy. (2)

Since Vy=exp(—iH ,A/F) is the bilateral shift on
x,, or Vy‘I’,,7=‘1’,,7+1modN7 and ¥, is finite, V,
is pure discrete. By standard procedures one
can find eigenvalues and eigenvectors of V, and
obtain a Hamiltonian H , which satisfies the above.
A convenient choice is
N, -1
Hy= 12 (271/N ,A)Q,”,
=0
where Q,7 is the projection operator for the
eigenvector
Ny—l
¢17=N7-1/2 » (az)l_j‘l’j Y
i=0

with associated eigenvalue a, =exp(-27il/N,) of
V..
{t is useful to express H, and V (¢) =exp(-iH ,¢/
7) in terms of the original basis ¥, . By stan-
dard techniques one has

N7—1

2 dp03 P, (3)

JskR =0

H,=

where P, 7 ig the projection operator for ¥, 7,
0,7 exchanges ¥;” and ¥, 7, and the coefficient
d;, is given by

Ny-l 2
dip= 2 ””Z exp[27il(j - k)/N,]. (4)
=0 AAH
V,(t) is given by
Ny-l
V)= 25 bp(t)oyP,7, (5)
i k=0

where the coefficient b,,(¢) is given by

b,(t) =I-V1— Ni—l exp[_%il <£ +k —j)] . (6)

Y =0 N)’

It is clear that the system Hamiltonian given by
Eqgs. (2) and (3) has the desired properties. It is
time independent. Also the evolution of ¥(¢)
=exp(-iHt/n)¥,” is such that at time ¢=na, ¥ (n4)
=0 4 ny- This follows from the fact that
b,;,(nA) =0 unless (nmodNy +k ~j) =0 or N,. For
both of these cases b,,(rA)=1. {=N,A is the

recurrence cycle time for any state in C,.

An example of the above can be constructed by
letting the quantum system be a finite two-di-
mensional quantum lattice of spin-3 systems in
which separate disjoint regions of the lattice cor-
respond to the subsystems L, T, k, ¢, and R of
the reversible machine. Each state ¥;, ,,=¥%%
U\ TV eV, ' ®¥,® describes a configuration
of spin projections along some fixed direction
for each spin in the lattice, and C becomes the
set of all lattice configurations. Details of the
correspondence of Injeg to ¥, ;,, which involves
constructing binary representations for the states
of L, expressions on T and R, and positions of 2
and ¢ are given elsewhere.' Figure 1 gives
some details.

For any configuration f on all or part of the
spin lattice the projection operator P; for find-
ing configuration f is given by P;=®,;epomy
X Pyip(i,7), where Dom f is the lattice region
associated with /. The projection operator for
finding the spin at site (,j) up (+) or down (=)
is given by P,(i,j) =[1% 0,(,7)]/2, where 0,(,j)

MR 4y - - - . %
. + o+ - +
. R
2M+2 + o+ - . -
2M+ -+ - e = 4
2M B T 3
2M-1 - e e+ 4+ = . -
’ x
- -+ +
M - + O+ - J
M-1 -+ + 0
. . z
2 -+
1 -+ -
0 + - + J
J -1 0 1 J —

X

FIG. 1. The lattice model of the overall computing
system. M and L;® are the number of sites needed
to represent the number of symbols in S and the num-
ber of (Isj) triples reachable in <J steps. A plus sign
denotes spin up and a minus sign denotes spin down.
The dotes indicate that the regions are filled with one
spin-3 system at each site. The brackets give the
lattice subregions associated with the parts of the
machine.
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is the Pauli matrix
(5 3)
0 -1
for the spin at (7, j).

For any pair f, g of configurations defined over
the same lattice region the exchange operator
0y, is defined by 04, =® (; jep,, [0:(5,7)], where
Dy, is the set of sites at which f differs from g
and

()

is the spin-flip operator for the spin at site (i, j).
Note that o, ¥, # ¥, for any configuration # whose
domain has a nonzero overlap with Dy, .

The models constructed here describe the first
J steps of any Turing machine computation. If
the computation halts in m <J steps then the
same final (/sj) triple is recorded in cells m, m
+1,..., J of the record system. The states of L,
T, and % are the same at all times nA, where m
<n <J, as they must be for a completed compu-
tation. For times nA with J<n <N, the states
¥(nA) =¥, 7 describe a complex inverse phase
in which the record is erased and the computa-
tion is undone. If desired, the reversal phase
can be made to occur as the exact inverse of the
forward phase,®

There is also no state degradation or energy
dissipation as the models evolve. At each time
nA with n=0,1,...,N,~1 the overall system
state ¥7(nA) =¥ 7, It is not a linear combination

Ny—l

2 Ca(na)y,”

m=0
of states ¥, ? where the coefficients c,(nA) are
such that c,(nA) #0 and the amplitude |c,(rna)|
for finding ¥, 7 in ¥7(nA) decreases as » increas-
es. This would be the case if the overall system
state were degrading as it evolves.

The models constructed here also operate
essentially at the quantum limit in that the ener-
gy uncertainty 0E divided by 1/4, the computa-
tion speed, is close to the limit given by the time-
energy uncertainty principle. This follows from
the fact that the spread in energy eigenvalues,
given by (27%/A)(1 =N~') =27%/4A, is an upper
limit for 0E, whereas the uncertainty principle
gives 0E 2 h7/A,

Also for the models constructed here, limits
on computation speed which may arise from en-
ergy dissipation® are not present. One can in
principle at least increase the computation speed
by increasing the average system energy (H y)
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without introducing state degradation and energy
dissipation. In particular

(Hy)= ¥ (OHY(4))=(h/A) (1 =N"Y) = 7h/A

which is proportional to the computation speed.
For example, if the average system energy is

1 eV, the speed is 5x 10" steps/sec; if the ener-
gy is 1 erg, the speed is 3 X10% steps/sec which
is greater than Bekenstein’s® upper limit of 10%
steps/sec.

The mathematical existence of quantum me-
chanical models which dissipate no energy, such
as those constructed here, support Deutsch™ and
Landauer'' in their criticism of Bekenstein,®
Mundici,® and Bremerman.! Whether or not
such models can actually be physically construct-
ed is, however, an open question.

For times nA + 6 which are not integral multi-
ples of A, i.e., 0 <0 <A, the state of the system
is obtained from Eq. (5) as

¥(nA+06)= Vy(na+06)¥,”

N, =1
= é bm-(n mod . )(6)\11’"7. (7)
m=0 Y

Equation (7) shows that at such times the overall
model system state is a linear combination over
all representation states in ¥C,. This type of
evolution can be called {ime global because the
linear combination includes states correspond-
ing to all stages that the system reached in the
past and all stages that it will reach in the future.
It will be seen elsewhere’* that one can also
construct time-dependent Hamiltonian models of
Turing machines such that the evolution is fime
local. That is, at times which are not integral
multiples of A, the overall system state is a
linear combination of just two representation
states, namely those corresponding to the stage
the computation has just left and the one to which
it is going. For models such as the spin-lattice
models, time-global and time-local evolutions
are quite different with respect to restrictions
which some measurements on the system must
satisfy. Details will be given elsewhere,*
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