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If the proton is considered to be infinitely massive, no bound state of a system made up
of a positron and a hydrogen atom can exist. In this Letter a new method is introduced
for taking into account finite nuclear mass. By using this method it is shown that the in-
clusion of the finite mass of the proton does not result in the appearance of a bound state.

PACS numbers: 36.10.-k, 36.90.+f, 03.65.Ge

It has been known since the work of Aronson,
Kleinman, and Spruch’ and Armour? that, in the
approximation in which the proton is considered
to be infinitely massive, a system made up of a
hydrogen atom and a positron (¢*) has no bound
state below the continuum. Aronson etal. showed
further that no bound state of the system can
exist if the positron mass satisfies m,<1.46m,,
where m, is the mass of the electron. This limit
has recently been increased to m ,<1.51m, by
Armour and Schrader.?

The approximation of treating the proton as
being infinitely massive is a good one as M /m,
=1836, where M is the mass of the proton. How-
ever, if the finite mass of the proton is taken into
account, small additional terms are introduced
into the Hamiltonian for the internal motion of
the system. It is the purpose of this Letter to
show how these terms can be taken'into account
by a new method. It is shown in this way that |
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are the reduced masses of the positron and the
electron, respectively. The inclusion of the fi-
nite mass of the proton thus effectively reduces
slightly the masses of the positron and the elec-
tron and introduces a small coupling term be-
tween the momenta of the positron and the elec-
tron, the Hughes-Eckart or mass-polarization
term (Hughes and Eckart?).

Since m, =m, and hence L, =U,, it can readily
be seen that, if the Hughes-Eckart term is
omitted in H¢;,(1,2), the resulting Hamiltonian
and H;,r are related by a scaling transformation.
Since H;,¢ cannot support a bound state, it follaws
that Hy;, certainly could not support a bound state
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their inclusion does not give rise to a bound state.
This is the first time that this result has been
established.

If the proton is assumed to be infinitely massive,
the Hamiltonian for the internal motion of the sys-
tem is of the form
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where particle 1 is the positron, particle 2 is the
electron, 7, and 7, are the distances between the
proton and the positron and the proton and the
electron, respectively, and 7,, is the distance
between the electron and the positron. Units have
been chosen for which % =e =1, where ¢ is the
charge on the proton.

If the finite mass of the proton is taken into ac-
count and the origin of the coordinates is chosen
to be at the proton, the Hamiltonian for the inter-
nal motion takes the form

1 (2)

in the absence of the Hughes-Eckart term. Thus
the key to the determination of whether or not
Hg;, can support a bound state is the calculation
of the effect of this term.

Suppose Hy;, can support at least one bound
state, ¥(t,,T,), i.e.,

Hg oV =EY, (5)

where E <lowest continuum threshold=- 4u,. It
is convenient to choose ¥ to be normalized so that

¥|¥)=1. (6)

We shall assume that, in the event of there being
more than one bound state, ¥ corresponds to the
bound state which is lowest in energy.

To obtain a bound on (¥|v,- V,|¥) let us consider
the form taken by the Hamiltonian for the inter-
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nal motion when transformed to coordinates relative to the electron rather than the proton (Farid and
Mattis®). In terms of this coordinate system,the Hamiltonian for the internal motion has the form
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where
vy=mm, /m,+m,).

Particle 1 is the positron, particle 3 the proton, and R, and R, are the distances of the positron and
proton, respectively, from the electron at the origin. R, is the distance between the proton and the
positron. Note that Hy;,7(1,3) is readily derived from Hy;,(1,2) by interchanging the proton and the
electron.

Since Hy;,(1,2) and Hy;,7(1,3) are related by a canonical transformation, it follows that they must
have the same eigenvalue spectrum. In particular, the lowest bound state of Hy;,7(1,3) must have en-
ergy E.

H;,7(1,3) involves the coordinates of the positron and the proton with origin at the electron. Let us
now consider this Hamiltonian with these coordinates replaced by the coordinates of the positron and
the electron with origin at the proton. It takes the form
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This operator does not correspond to anything physical. However, it follows from our earlier analysis
that H¢;,(1,2) and Hy,7(1,2) must have the same eigenvalue spectrum. In particular, the lowest bound-
state eigenfunction of Hy;,”(1,2) must correspond to the eigenvalue E.

Since ¥ is a ground-state eigenfunction of Hy;,(1,2), it follows that
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Note that it follows from our earlier discussion that for a bound state to exist at all,
| v v, ¥)>0, (12)
Equations (5) and (11) imply that, if a bound state exists, then
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It follows that if there exists no normalized square-integrable function, ®(r,,T,), for which
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and
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then no bound state of Hy;, can exist.

Physically, H;,¢' represents the internal motion, in the infinite-proton-mass approximation, of a
system made up of a proton, a “positron” of charge (M +m,)/(M —m,) and mass

By =M=-m)uyv,/Mv,-m i), aan

and an “electron” having mass i, and the usual charge. Now — %/, is the lowest continuum threshold
for such a system. Thus a necessary condition for Hy;, to be able to support a bound state is that
H;,¢ be able to support a bound state.

The existence, or otherwise, of a bound state of H;,¢’ can be investigated by the method used by
Armour,? hereinafter referred to as I. The ground state will be an S state. For such states H inf’ Will
reduce to the form
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where R =7,, ¥ =¥, and
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As was pointed out in I, Spruch® has shown that a necessary condition for H'(R,7,6) to be able to sup-
port a bound state is that the radial Hamiltonian, H,(R), be able to support a bound state where

H,(R)=t,(R)+V,(R), (23)
ViR) =Ey(R) =E wp; . (24)
E,(R) is the lowest eigenvalue, for a given R value, of the Hamiltonian
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and

E n, =lowest continuum threshold =- 3u,.

The method employed in I for showing that #,(R) could not support a bound state in the case of ¢ "H
with the proton assumed to be infinitely massive was to calculate a lower bound, V.(R), to V,(R) and
then show that V', (R) could not support a bound state. Asm,=m, and thus 4,’ =m,, K,=0.9995~, and
Z=1.0011, it seems almost certain that #,(R) in this case will also be unable to support a bound state.
We can readily show that this is so as follows. For R >20 bohr, V(R) is certainly given accurately by
treating the system as a hydrogen atom perturbed by a charge Z (see, for example, Wind").

We can obtain V(R) for the region R < 20 bohr as follows.

H,'(r,0;R)> ZH,(r,0;R), (26)
where
Ry=o L 8 (208 (1 1 Vo 1 1 1
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and
Kk =Zp, =1,0011m,.

H,(r,6;R) is essentially the same as the Hamilto-
nian H,(v,6;R) of I; it differs from it only in that
m, is replaced by 1. This makes it possible to
use a lower bound potential already calculated.

It can be shown by solving the appropriate ra-
dial Schrodinger equation that V(R) cannot sup-
port a bound state and consequently no bound
state of H,(R) exists. It follows that no bound
state of H; ¢’ exists. Hence Hy;,, the Hamiltonian
for the internal motion of ¢ “H in the case of finite
proton mass, can have no bound state. This
proves, for the first time, that no bound state of
e*H exists in the case when the finite mass of the
proton is taken into account.

It is intended as a next stage to apply the meth-
od to try to prove the absence of a bound state
for a system made up of muonium and a positron.

The mass of the muon is 207#, and, consequently,

the effect of the Hughes-Eckart term can be ex-
pected to be more important in this case.

I wish to thank Dr. M. Farid, and Dr. D. C. Mat-
tis of the University of Utah for drawing my at-
tention to the form of the Hamiltonian for the in-
ternal motion of e *H with origin at the electron.
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Quantum Mechanical Models of Turing Machines That Dissipate No Energy
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Quantum mechanical Hamiltonian models of Turing machines are constructed here on a
finite lattice of spin-3 systems. The models do not dissipate any energy and they operate
at the quantum limit in that the system (energy uncertainty)/(computation speed) is close
to the limit given by the time-energy uncertainty principle.

PACS numbers: 03.65.-w, 05.30.-d

There has been much discussion in the litera-
ture recently about the physical limitations of the
computation process and information transfer,'”'2
Early work™? agsumed that the computation
process was irreversible because of the neces~
sity to discard information, However, this was
shown to be false by Bennett.® More recently
Landauer” has stressed the importance of the
energy dissipation problem for the computation
process. Recent work®® has assumed that en-
ergy dissipation must occur, and on the basis
of this, Bekenstein® derived an upper limit of
10" steps/sec for computation speeds. However,
this work has been criticized by Deutsch'® and
Landauer.! Fredkin and Toffoli'? have construct-
ed a classical mechanical model of the computa-
tion process which dissipates no energy.
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The purpose of this note is to briefly present
and discuss quantum mechanical Hamiltonian
models of the computation process as represented
by standard Turing machines,® These models
also dissipate no energy and operate at essen-
tially the quantum limit in that the total system
(energy uncertainty)/(computation speed) = 277,
Unlike the models constructed in other work,®
the models constructed here do not use succes-
sive scattering to drive the process.

A Turing machine consists of three parts, an
internal machine part L which is capable of
assuming any one of a finite number of states, a
computation tape T infinite in both directions,
and a computation head #. T is divided into an
infinite number of cells at positions ... -1, 0,
1,... . Each cell contains any symbol s of an
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