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The Onsager reciprocity theorem has been since its discovery in 1931 one of the most
prominent successes of nonequilibrium statistical mechanics. Its interpretation and ap-
plication suffer from several limiting assumptions made in its derivation. The most
notable of these is the linear relation between the currents and the affinities. A general-
ization of the Onsager theorem has been obtained, which is comparatively free of ad hoc

assumptions.

PACS numbers: 05.70.Ln

It has long been customary in the field of non-
equilibrium thermodynamics to employ linear con-
stitutive relations between fluxes and gradients of
affinities. Perhaps the most familiar of these is
the proportionality assumed between the heat flux
and the temperature gradient. The phenomenolog-
ical coefficient of proportionality is the thermal
conductivity.

Besides heat conduction we may also have parti-
cle diffusion and/or electron conduction. One
finds that the flux of thermal energy depends not
only on the temperature gradient but upon the con-
centration gradient and electric potential gradient
(if the particles are charged). Similarly the par-
ticle diffusion depends not only on the concentra-
tion gradient but on the temperature and electric
potential gradients as well. In the early develop-
ment of the subject it was found that if one as-
sumed linear constitutive relations between the
fluxes and the affinity gradients that certain rela-
tions existed between the coefficients. Among
these are the well-known Kelvin relations.

Although models were proposed from which it
was possible to derive many of these relationships
it was the grand synthesis of Lars Onsager that
showed that all such interrelationships are exam-
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ples of a single fundamental theorem. This
theorem now bears his name and is referred

to as the “Onsager Reciprocity Theorem.” Onsa-
ger demonstrated that the reciprocity among the
constitutive coefficients depends fundamentally
on the time-reversal invariance of the micro-
scopic equations of motion.

To obtain the reciprocal relations Onsager as-
sumed a linear proportionality between fluxes and
affinities. The coefficients of proportionality
were assumed to be constant, independent of the
thermodynamic state. We shall show that it is
possible to remove this assumption and thereby
construct a generalization of Onsager’s original
result.

We begin by considering a macroscopic system
with observables a,,a,,...,ax which we collective-
ly denote by a. These observables are functions
of the microscopic state of the system. The ob-
servables might, for example, be the numbers of
K chemical constitutents or the energies and par-
ticle number in given subdomains of the system.

The microscopic state of the system is repre-
sented by the generalized coordinates (¢,,...,9x,
Dise-«,by) in a 2N-dimensional phase space I'.
We shall find it convenient to introduce a vector
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z with components (2,,...,2,4) =(q1,++,qx5,01,
«+eyPy). We may now succinctly express the
functional dependence of the observables a on the
phase point by the relation a =a(z).

Within I" we define two point transformations:
(1) the time evolution operator T,z,=2(t,2,),
where z(t,z,) is the solution of Hamilton’s equa-
tions with initial value 2z,, and (2) the time-rever-
sal operator Rz =(g,-p). A function f(z) is called
time reversible if f(Rz) =f(z) and time invariant
if f/(T',2) =f(z) for all t. The Hamiltonian is as-
sumed to have both properties. This implies that
T,RT,z =Rz or, equivalently, that

RT,=T.,R. 1).

We consider an ensemble with a time-reversi-
ble and time-invariant density p(z). For any ¢,
the K XK correlation matrix C(t) is defined as

C=[ra@)a(T,2)p(z)d*z, )

Introducing into Eq. (2) the transformation of
variables 2z’ =RT,z and using the faets that p(z’)
=p(z), d*"2' =d*"z, and RT, =T, R we write C(¢)
as

€=/ aRT, zaRz")p(")d*z", 3)
We shall now assume that each of the observables
is either even or odd under time reversal:

a;(R2) =€,a;(z), €,=%1, 4)
We may also write Eq. (4) in terms of a K XK ma-

trix €;,=€;0;; as a(Rz) =€ -a(z). Using Eq. (4) in
Eq. (3) gives the result

Cy;(t) =€;€;,C ;). (5)

At time zero we assume that the observables
a(z) take on specified values @ defined in a K-
dimensional space y. Iny we define an ensemble
entropy function S(@) and a time evolution opera-
tor T, by the equations’

e 5@ = [ 6(a(2) - 2)p(2)d*'z (6)

(A -ee)fa,0,e59d% +t [T (@,P,, - €,€,a,P, Wye S¥a¥a =0,
k

and
Ttg_=frg(th)6(a_(z)—_qz_)p(z)dz”z/e s@ ()

where 6(a) is a K-dimensional Dirac 6 function.
Without loss of generality we may assume that
the maximum of S(a) (i.e., the equilibrium state)
occurs at @ =0, With these definitions we obtain

the identity
C=[La()a(T,2)p(e)d*z
= Jy2 [La(@, )0l a(e) - @) d®z a¥e:
- faT,ac"Oaka, "

The gradient of S defines a vector field iny,
¥(a), with components (@) =3S(a)/da,, which,
for reasonable thermodynamic ensembles, is zero
only at the origin. The conventional Onsager re-
ciprocity relation can be easily obtained if we as-
sume that there exists some interval 7<¢<T and
some neighborhood of the origin in y within which
one can find a constant K XK matrix, P satisfying

T,a=a+ty-P. 9

It is then possible to use Eq. (5) to show that _e_-f
is a symmetric matrix and this is the traditional
Onsager relation.? For typical thermodynamic
systems the lower time limit, 7, is on the order
of a microscopic collision time and is thus macro-
scopically indistinguishable from zero. The upper
limit, T, need only be much less than any maero-
scopic relaxation time of the system so that terms
of order ¢% and higher in T, @ —a can be neglected.
We shall now show that these restrictions are
unnecessary and obtain a more general conse-
quence of time reversibility. We define P(a ,¢)
as any matrix function satisfying Eq. (9). That at
least one such function exists is guaranteed by
the fact that the dyadic P=[¢(T, @ -a)/t]y? is a
solution of Eq. (9). However, once we no longer
require that P be a constant matrix it is clear
that Eq. (9) is not sufficient to define a unique
matrix function. We shall return to the question
of the nonuniqueness of P (2,¢) as defined by Eq.
(9) later. Combining Egs. (5), (8), and (9) we ob-
tain

(10)

Since this equation is an identity in time, the first term must be independently equal to zero. To veri-

fy this we observe that

(1- eiej)f)’aiaje S@g¥a =(1 - €i€j)f1—~ai(fl_,?_)aj(q_,E)p(Z,g)dZNZ.

(11)

If a; and a; are of the same parity with respect to time reversal, then (1 —€;¢,) is zero. If they are of
opposite parity, the integral is zero since p(g,p) is of even parity. In either event the term is zero.
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Using the fact that y,e °=8¢ °/3a, and integrating Eq. (10) by parts, we obtain
JIP; =€, P, +33 (0P, /00, — €,€,0,0P, ;/oa,)]e @ a¥a =0, (12)
k

That Eq. (12) is a generalization of the Onsager
reciprocity relation may be easily seen because
the assumption that P is a constant matrix (with
respect to @ but not necessarily with respect to
t) leads immediately to the conventional Onsager
relation P;; =€;€; P, ,.

We may also see from Eq. (12) that the Onsager
relation remains valid to first order when P, is
not a constant matrix. Let us choose the ¢’s to
be the deviation of the macroscopic observable
from their equilibrium values. We may then ex-
pand P in a power series in @, which for small
a we may approximate by

Ptj(g,t) =Pij0(t) +Zk)Pijk(t)ak’ (13)
and substituting it into Eq. (12) we find that
P, jo(t) =€,€;P; (). (14)

The contribution from the sum in Eq. (12) vanish-
es, for

Ja,e5® gk =0 (15)

since the mean value of @ is zero by construction.
Thus to first order we recover the Onsager rela-
tion for the constant part of P.

A form of the Onsager relation may be retained
to all orders by taking advantage of f t that Eq.
(9) does not define a unique matrix E. Let usadd
the subsidiary condition v+ P(a,t) =0. (Note that
this condition is trivially satisfied by a constant
matrix.) With this added condition Eq. (12) takes
the simpler form

p41=€i€jﬁjta (16)
where T_’ is the ensemble average of P(a,t?),
B(t) = /P(a,t)e Pd*a, (amn

In summary we have in Eq. (12) a mathemati-

cal identity. The only assumptions made in its
derivation are that the a’s are either even or
odd functions of the momenta, the dynamics of a
point in phase space is time invariant and the
Hamiltonian is an even function of the momenta.
It is unnecessary to make any assumptions re-
garding the magnitude of /, or that the system is
close to its equilibrium state. The entropy need
not be a quadratic function of the thermodynamic
observables. The dimension K of the thermody-
namic state space is arbitrary. One need not at-
tempt to construct a maximal set of independent
observables. Last, and perhaps most important,
the Onsager matrix P need not be constant with
respect to time or the thermodynamic observa-
bles.

We have restricted ourselves to discrete ob-
servables a. In a forthcoming paper these re-
sults will be extended to the treatment of continu-
ous systems. We will also consider the relation
between the traditional entropy production formal-
ism and the Onsager reciprocity relation.

'What we have defined as S(a) is the standard entropy
only if p(z) describes a microcanonical ensemble [p
=6(H (2)=E)]. Ifp is a canonical ensemble density
then our S(a) is the usual canonical potential S —BE.
With a slight generalization of the formalism one could
also treat the grand canonical ensemble. All of our
later results remain valid for these other ensembles.
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