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and oversaturated regimes. Moreover, locally
disordered regions in Potts models act as effec-
tive vacancies, and by condensing cause first-
order phase transitions. ' Effective vacancies
are favored by competing helicity (in the fluid dip
region of the phase diagram) and coul.d conceivably
produce tricritical and triple points [insets Figs.
3(a) and 5]. Finally, by treating triangular patch-
es forming a hexagonal array, the possibility of
striped" domain-wall phases would also be in-
cluded.
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A novel cluster-expanded ab initio effective or model. Hamiltonian is described and il-
lustrated for a linear chain. of hydrogen atoms. The method relies on expanding the model
Hamiltonian in a sprn of irreducible cluster interaction. operators. A hierarchy of increas-
ingly accurate ab initio Heisenberg spin Hamiltonians duplicate low eigenvalues of the
more complete Schrodinger Hamiltonian. Finally these Heisenberg models are treated to
obtain the ground-state energy and magnetic susceptibility of the infinite chain.

PACS numbers: 71.10.+x, 33.10.Cs

Most conventional theories of extended systems
rely on a delocalized independent-particle view-
point. We here show a method which adopts the
localized viewpoint (successful in even pre-
quantum-mechanical solid- state theories) and
combines an expansion in terms of clusters (the
localized entities) with ab initio correlated calcu-
lations on the clusters. This straightforward ap-
proach was indicated in low-order approximation

for the Hubbard model by Bulaevski. ' A more de-
tailed description of our method, including its
relation to other more conventional approaches,
is to be reported elsewhere. ' Here we illustrate
the essential features of our method for one-di-
mensional chains of hydrogen atoms.

The method combines ab initio results for small
subunits of an infinite system with a cluster ex-
pansion. The ab initio calculations may be per-
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formed by any reliable method. For small sys-
tems a large configuration-interaction (CI) wave
function can yield most of the correlation energy
in each cluster. It is, of course, important that
results be of comparable accuracy for every clus-
ter. We calculate a model Heisenberg spin Hamil-
tonian for each cluster by requiring the model
cluster to have the same energy spectrum as the
ab initio calculation. The model Hamiltonian is
expanded in a complete set of irreducible cluster-
interaction operators. Convergence is recognized
by the decreasing contributions made as clusters
grow larger. Truncation to dominant cluster-
interaction operators gives an approximate ab
initio model Hamiltonian which in turn is to be
solved.

For the linear chain of hydrogen atoms each
cluster is a subchain. We let the graph-theoretic
symbol I' represent a sequence of N sites connect-
ed by nearest-neighbor bonds (or graph-theoretic
edges). Subchains or clusters yE I' are labeled
by the subsequences of sites in y. Chains and
subchains of equally spaced sites such as here
are completely specified by their sizes which we
write as li'I =N and I yl.

Accurate energy values and wave functions are
readily found for small clusters, such as, in our
present example, linear H atom chains through
N =6. Our method will be illustrated by use of two
variational wave functions: The first, (a), is a
CI wave function of all covalent and ionic struc-
tures composed from unoptimized hydrogenic 1s
orbitals on each site; the second, (b), is the
same type of CI space now using (orbital expo-
nent) optimized 1s orbitals. Greater accuracy
could be achieved by extending the orbital basis.
A key point in our choice of CI spaces is that the
spaces be chosen such that they can be viewed as
being spanned by all (particle conserving) pro-
ducts formed from a set of site states. Here
there are four possible site states on each site,
namely, H', 1sn, 1sp, and 1s'.

We will utilize the energies of several low-lying
states of each spin multiplicity. For example,
we need the '~g' and '~„' states of H„and two
doublet states and one quartet of H, . Our results
for these subchains or clusters are intermediate
between Hartree-Fock (HF) and e'xact values. For
cluster length N =2 (H2 at R =1.SS6 bohrs), the
ground-state energy in each approximation is,
for Hartree-Fock (HF), -1.101 a.u. (Ref. 3); for
(a), —1.112 a.u. ; for (b), —1.125 a.u. ; exact, '
—1.146 a.u.

We shall make a cluster expansion of a model

X(I') =Q J„(I')P,
where J„(l') is termed an exchange (or permuta-
tion) energy. The permutations P may be tran-
scribed into spin operators 5, ~ 5, via the Dirac
identity, ' since the sum in Eq. (1) may be' re-
stricted to transpositions and products of dis-
joint transpositions. Further, many of the 4's
are equal by symmetry [e.g. , for I' =(1,2, 3) we
have J(„)(1')=J(„)(I")].

Assuming that K(l') is given we make the clus-
ter expansion

&(I') = v(w) (2)
yc I" J

in a complete set {I') of connected subgraphs of
I'. Here V(y) is called the irreducible cluster
interaction belonging to y. Equations (2) for each
possible graph I" form a linear transformation
which may be inverted to give (for linear chains)

v(i) =&(t),
v(i, i +I) =x(i, i+1) -x(i) -&(t+I)
V(i -1,i, i+1) (3)

=X(i —l,i,i + 1)-SC(i —l,i) —X(i,i +1) +&(i),

Hamiltonian K(1') for system I'. A first general
condition on &(I') is that it be defined on a space
spanned by products of site states, these site
states corresponding to subsets of those used in
the CI calculations. A second general condition
to be imposed is that &(I') have eigenvalues agree-
ing exactly with the corresponding low-lying
eigenvalues arising from a CI calculation. In this
way we regard JC(1') as an ab initio model repre-
sentation of low-lying CI eigenlevels of I", and
approximations to &(I') yield approximations to
those CI eigenlevels.

For the H-atom chain we choose the site states
to be up and down spins on each site; thence
X(I') ean be viewed a,s a Heisenberg spin Hamil-
tonian defined on the 2"-dimensional space of
spin orientations (+ ~) for each of the N atoms.
For well-separated atoms this space is certainly
reasonable. Regardless of separation this space
corresponds to the (covalent) valence-band space
such as introduced by Heitler and London. In ad-
dition our results can surpass the Heitler-London
approximation, since &(I') includes the affects of
CI with higher-lying states. The matching be-
tween the low-lying CI eigenlevels and those of
'iC(I') is to be achieved by an appropriate choice
for the so-called "exchange parameters" appear-
ing in &(I').

We express &{I'}in terms of permutations,
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etc. Inversions for more general graphs may be
effected by Mobius functions. ' Cluster interac-
tions are also expressed in permutations:

(4)

where j&(y) is an irreducible cluster exchange en-
ergy ~

The (ab initio) model Hamiltonian X(i') and the
irreducible cluster interactions V(y) are deter-
mined exactly in a stepwise fashion. In the first
step with I" consisting of a single site our ab initio
basis determines the H-atom energy E(1). The
eigenvalue of X(1) is e(l) =J,(l) =j,(1) so that the
exchange energies are completely fixed by re-
quiring ~(l) E(1). In the second step (1,2) there
are two ab initio eigenvalues E('&&'), the singlet
ground state, and E('Z„'), the triplet. The eigen-
values of X(1,2) are 'e =4,(1,2) +J&»~(1,2) and
'e =J,(1,2) —Z&»~(1, 2). The requirements 'e
=E('&g') and '& =E( &,') give two equations to fix
the values of 8, and J&»&. Next Eqs. (3) determine

j,(1,2) and j&»)(1,2), and so forth.
For linear chains through N =3 the operators

X(1") and V(y) and the interaction energies 4~(1')
and j~(y) are uniquely determined by equality of

and ab initio eigenvalues of corresponding sym-
metries. Additional constraints are necessary
for V~ 4. Here we choose to constrain V(y) to be
"small"; that is we minimize the operator norm

IIV(y)ll whe~e IIVII =trV V.
Convergence of the cluster expansion may be

empirically assessed in several ways. The con-
tributions to a given exchange energy tend to de-
crease as the cluster size increases, e.g. ,
j&»& (1,2) =0.14', j&»~ (1,2, 3) =0.021, and j&»~ (1,2,
3,4) =0.002 [at the (a) level of approximation].
Also the operator norm of the irreducible cluster
interaction decreases with cluster size, e.g. ,
IIV(1,2) I =0.113, Ilv(1, 2, 3)ll =0.016, Ilv(1, 2, 3,4)ll
=0.005 [at the (b) level]. Evidently, at R =1.886
bohrs, the cluster expansion converges slowly.

The irreducible cluster interactions are next
used to construct an n-site approximation to X(I')
for very long cyclic chains. Namely, we truncate
the cluster expansion by neglecting clusters above
the size Iyl =n:

I yl —~

X&"&(r)= g V(y). (5)
y

For n =2 we have merely a nearest-neighbor Hei-
senberg model for which the ground-state energy
of an infinite cyclic chain was given by Hulthen. '
For n =3 we have a next-nearest-neighbor Heisen-
berg model for which the ground-state energy of

TABLE I. Ab initio ground-state binding energies per
site for cyclic chains of hydrogen atoms. n-site de-
notes our cluster expansion truncated to n-site interac-
tions.

Method Bef. N R (a.u.)

Qji F
UHF
CI
CI

2-site
3-site
4-s.ite
2-site
3-site
4-site
BHF
BHF
HHF
BHF
-HF

HF
RHF
HHF
BHF
UHF

2-site
3-site
4-site
RHF
UHF

10
10

9
17

13
13
13
13
11
12
15
15
16
16

14
14

6
6
6
6
6
6
6
6
6

14
38
62
14

2.00
2.00
2.00
2.00
2.00
2.00
2.00
1.886
1.886
1.886
1.888
1.886
1.886
1.888
2.00
2.00
1.88
1.78
1.95
1.95
1.886
1.886
1.886
1.95
1.95

0.53021
0.53700
0.54160

0.53376
0.54595
0.54209
0.52993
0.54380
0.53795

0.4915
0.5195

0.52286
0.53693
0.53160

0.53456
0.54300
0.54803
0.54157
0.54041
0.54983
0.54739
0.539029
0.54965
0.55242
0.53232
0.53011
0.52978
0.53857

0.52385
0.52660
0.52939
0.53139
0.53168
0.53331
0.54485
0.5341
0.5384

Calculations restricted to the CI space constructed
from unscaled 1s orbitals.

Calculations within the CI space constructed from
scaled ls orbitals

Calculations using a double-zeta basis of orbitals.
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an infinite cyclic chain has been estimated by
Garani et aE.' For n =4 we estimate the ground-
state energy of an infinite chain in the same way
(extrapolating finite-cycle results on a plot of

E/N versus 1/& ). Our results for both W = 6 and
N- cycles are given in Table I. For compari-
son we give values computed by other methods, ' "
mostly either the restricted or unrestricted HF
(RHF or UHF) methods.

The spin states of our Heisenberg model corre-
spond to those of the CI wave function. Hence
the CI spin magnetic properties are accurately
represented by those of X(i'). Therefore we may
use earlier work on the nearest-neighbor" and
next-nearest-neighbor" Heisenberg models to
estimate the zero-temperature magnetic sus-
ceptibility y, of hydrogen chains. The two- and
three-site approximations yield values of
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gojNg 0 8 =0.344 and 0.39 a.u. for the (b) space,
where g and p B are the spin g factor and Bohr
magneton. Magnetic susceptibility has not been
reported for previous ab initio ealeulations. Of
course additional properties can be obtained by
use of the Heisenberg model, even above absolute
zero.

We have illustrated a localized-site eluster-
expansion method for infinite periodic systems
by application to chains of H atoms. Correlation
is explicitly included, so that our energies lie be.-
low the corresponding RHF and UHF results.
Extrapolated energies for chains of length N =6
are consistent with full CI ab initio results. Our
method appears to converge to the exact values
as longer clusters are included (four-site approxi-
mation better than three-site, etc.).

The Heisenberg Hamiltonians utilized have a
familiar magnetic interpretation. In the nearest-
neighbor or two-site approximation our model in-
dicates an "antiferromagnetic" interaction 4~,2)

& 0
bebveen H atoms which agrees with more accurate
results '" for finite chains.

Our method can be extended and improved in
several ways. (1) Any small-system ab initio (or
empirical or experimental) method can be used
to find the requisite energy values. (2) Cluster
interactions ean be found in two and three dimen-
sions by appropriate modifications in Eq. (4).
(3) The sit"es of"the method can be any atom or
molecule. (4) More than one type of site or "bond"
may be present in the lattice. (5) The model
Hamiltonian may be changed to, say, a Hubbard
model.

The two internal methods to assess accuracy
cited here and comparison with previous work
provide empirica1 justification for our truncated
cluster-expansion method. We feel that the meth-

od will in practice be rapidly convergent for a
wide variety of systems in view of our present
calculations on a system of H atoms at a relative-
ly small separation where the atoms are very
strongly interacting in comparison with what is
ordinarily regarded to be treatable by the Heisen-
berg model.
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