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Commensurate-Incommensurate Phase Diagrams for Overlayers from a Helical Potts Model
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Oversaturated layers such as krypton on graphite are represented by a triplet helical
Potts model, incorporating domain walls and antiwalls, and their crossirgs and annihila-
tions (dislocations). Renormalization-group treatment yields a disordered phase between
commensurate and incommensurate phases, down to zero temperature. Coadsorption
produces a first-order transition directly between the commensurate and incommensurate
phases, in analogy to temper embrittlement.

PACS numbers: 68.45.-v, 64.60.-i, 82.65.Dp, 05.70.Fh
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FIG. 1. Structures in an oversaturated layer. A
Burgers vector is shown.

Many adsorbed l.ayers assume a periodicity of
their supporting substrate. However, since the
adsorbate is smaller than the separation imposed
by the substrate, at an increased ambient pres-
sure, commensurability is abandoned. This tran-
sition has been subject to many experiments' '
and theories, "with many observations still to
be explained. We propose a microscopic model
for oversaturated layers, with competing ener-
gies straightforwardly related to adatom repul-
sion and chemical potential. We calculate phase
diagrams, and argue for the (-', ) power law"' of
the onset of incommensuration. A "temper em-
brittlement" mechanism is proposed for the first-
order transition in coadsorption systems. These
results agree with experiments.

Krypton on graphite occupies orie of three sub-
lattices of adsorption sites, which are the graph-
ite hexagon centers. The left-hand side of Fig. 1
shows sublattice a occupied. An increased den-
sity, due to increased chemical potential p,, can
be accommodated as a heavy domain seazl con-
taining an extra one-third of a column of adsorb-
ates. Its contribution to the Hamiltonian —PK is
l(tt/3 —J), where l is the wall length in units of

commensurate adatom separation, and the re-
pulsion J&0 is the effective nearest-neighbor
minus second-neighbor energies. "Effective" is
stressed, since the values are modified by adsorp-
tion off hexagon centers within a wal. t. width. Ac-
tual walls are indeed not sharp, unlike the schem-
atic Fig. 1. In the x direction, heavy walls sep-
arate (a, b) and cyclic permutations. Alternative-
ly, supexheavy zoa/ls, each accommodating two-
thirds of an adsorbate column, separate (a, c) and
cyclic permutations. Their contribution to —PK
is l(2&/3 —2J'). Equivalent wall identifications
are easily done for the other two crystal direc-
tions (at + 120'). Both types of wall are important
in the region p/3- Z of the phenomena of interest.
Figure 1 also exhibits heavy and superheavy sea/l

crossings, each contributing —3Z/2 to —PK. The
two types of wall annihilate at a dislocation point,
with no additional contribution to —PK. Thus,
they can also be called wal. l and antiwall.

The statistical mechanics of the oversaturated
layer is carried out by viewing it as composed of
hexagonal "patches, " each occupying sublattice
a, b, or c. Larger domains can be formed by
adjoining patches occupying the same sublattice.
This procedure generates domain shapes with
length scales larger than or equal. to I, the side
length of the unit hexagonal patch (to be deter-
mined self-consistently). Shapes with smaller
scales are only approximately Accounted, by add-
ing an effective energy (&)in(l l/, ) to each wall in-
tersection (l, is the effective wall hard core taken'
to be 5). This reflects the entropy due to differ-
ent locations of the intersection, from shape vari-
ations on the smaller than l scales. A naive esti-
mate would have used an area. (3v 3/2)l' and ig-
nored matching constraints between such areas,
giving 2 ln(l/l, ). Bak et al. ' have shown the coef-
ficient to be 2 for a system with one type of wall.
The precise numerical value of this coefficient is
of minor quantitative importance in our calcula-
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tions. (A more faithful. representation, in future
work, would use irregular hexagons with sides
L, )

Accordingly, a triangular lattice is considered,
formed by K hexagonal patches of area (3U 3/2)p.
We trace over the patch variables (s, =a, b, or
c}, to obtain the free energy per adsorption site
F(l) = —2/(5/3l'R)ln Tr exp(-PX, ), where —PK,
=+U, (s;,sz, s~) is the extra energy due to wall
formation, and the latter sum is over nearest-
neighbor triplets, with

U, (a,a, a) = 0=F, —

U, (a,a, b) = (f/2)(p, —3Z)+ (—', )ln(l/l )=—D,

U, (a, b, c) = (f/2)(p, —3J)+ (2)ln(l/l, ) —3J/2=P,

U, (a, c,b) = l(p, —3Z)+ (-,')ln(l/l, ) —3J/2= N, -
for down triangles. For up triangles, the last two
expressions are interchanged. Minimizing P(l),
for fixed p, and J, determines l.

The configurations (a, b, c) and (a, c,b) have dif-
ferent "helicities" and occur with different ener-
gies. We have thus reached a helical Potts model
on a triangular lattice, with three-site interac-
tions. The importance of helicity in incommen-
suration phenomena has previously been recog-
nized, ' although motivated differently from here.
Helical Potts models on anisotropic square' and
hierarchical lattices' have yielded interesting
results. The present model is solved by use of
a position- space renormalization-group transfor-
mation, in a finite-cluster approximation. ' Con-
sider the operator" ~ which leaves one sublattice
of the triangular system unchanged, but cyclically
promotes the patch variables on the other two
sublattices by one and two, respectively: e.g. ,
v(a, b, c) = (a, c,b). The Hamiltonian is left in-
variant under application of 7 and simultaneous
cyclic permutation of (F,P,N). Our problem was
solved in the helically symmetric subspace I'=N

by Schick and Griffiths. " The 7 symmetry is suf-
ficient to generalize their recursions to our hel. —

ical.ly asymmetric space.
The resulting global phase diagram, governed

by fifteen fixed points, is shown in Fig. 2. For
low values of the dislocation fugacity e D, ferro-
magnetic, positive and negative helicity phases
are separated by first-order boundaries. At in-
termediate e ~, a disordered phase at the center
is bounded by second-order lines cusped at three
bicritical points. At high e, two bicritical
points disappear, and the disordered phase ex-
tends to strong coupling. We shall comment on
the possibility of triple and tricritical points in
the "bicritical" regions, and of striped phases in
the disordered strong- coupling regions.

The phase diagram applicable to layers is in
Fig. 3(a). The commensurate phase appears as
the ferromagnetic phase of the helical Potts model.
The incommensurate phase appears as the nega-
tive he1.icity phase. It is characterized by a hexa-
gonal net of superheavy walls (as distinct from
heavy walls, in agreement with experiment")
and by the negative helicity topology of the do-
mains. The disordered (fluid) phase extends down
to zero temperature, where the dislocation ener-
gy D dominates, between the commensurate and
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FIG. 2. Global phase diagram of the triplet helical
Potts model, from the finite-cluster renormalization.
First- (second-) order boundaries are drawn dashed
(f ll).

FIG. 3. (a) Overlayer phase diagram. Inset shows
possible modification due to the effective vacancy
mechanism. (b} The depth 0 as chemical potential
is scanned at the temperature of the cross. Arrows
point to locations of phase transitions. Inset shows
W(l) at the crossed point in the phase diagram above.
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incommensurate phases. This agrees with exper-
iment2" and an alternate theoretical approach. '
The very shall. ow minima of P(l), seen (except
deep into the incommensurate phase) in Figs. 3(b)
and 4 inset, are indicative within our approxima-
tion of breathing-mode fluctuations' of the wall
hexagons.

The incommensuration boundary, between the
commensurate and fluid phases, renormalizes to
a three-state Potts fixed point. On the fluid side,
a large length / is introduced into the system,
which is the average separation between the wall
crossings, which form a disordered fluid. The
density n „of crossings is an even (energylike)
density, therefore having the critical exponent
1-e, where the specific-heat exponent 0. equals

-', for the three-state Potts model. " (To check
this even-density exponent 1 —o. , we fitted kryp-
ton-on-graphite coverage data, "obtaining values
between 0.58 and O.V3.) Thus, the misfit should
be pro rtional to l '-n„' '-(tL —p, )" "' '=(p,
—p, )' ', giving an onset exponent which quantita-
tively agrees with experiments. "This specula-
tive argument requires that, inside the commens-
urate phase, wall-crossing fluctuations contribute
only to diffuse scattering and/or are of small
magnitude. A direct calculation of structure fac-
tors is obviously needed in this regard.

A slightly modified approach would recognize
that there is less room for adjustment within a
superheavy wall than within a heavy wal. l, so that
the effective repulsion J should be higher. Ac-
cordingly by use of J= 1.2J for superheavy walls,

the modified phase diagram of Fig. 4 is obtained.
It contains a new phase, with a heavy-wall net
and domains arranged with positive helicity. A

first-order boundary and a multicritical point
are also seen. This phase diagram could be ex-
pected in experimental systems exhibiting wide
walls, where intrawaQ adjustments are important.

Experiments have also yielded coadsorption of
deuterium with krypton on graphite. 4 Our ap-
proach indicates this can induce a novel phase
diagram: Having a smaller radius than krypton,
any deuterium which dissolves into the krypton-
rich phases will. preferentially go to the super-
heavy crossings. This is analogous to temper
embrittlement in steel, where impurities migrate
to grain boundaries. " The superheavy crossing
then contributes 3(J/2- O'D)+ (pD —p) to —PK,
where JD ((J) is the deuterium-krypton repulsion,
and p, D is the deuterium chemical potential. By
an increase in the ambient partial pressure of
deuterium (pD»1), this term can be made positive
(favorable). Then a bicritical phase diagram is
obtained (Fig. 5), a first-order boundary sep-
arating the commensurate and incommensurate
phases at low temperatures, in agreement with
experiment. 4 Conversely, in xenon coadsorption,
with radius greater than krypton, solubility is to
the interior of domains, stabilizing the commens-
urate phase. '

Our theory establishes contact with experiments
in several aspects. Avenues of further develop-
ment are also apparent: The inclusion of vacan-
cies will unify the multicritical submonolayer"
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FIG. 4. Phase diagram for J /J = 1.2. Inset shows
F(l) at the crossed point. Such shape occurs in the
positive helicity phase and the fluid close to it. At the
points consecutively dotted on the boundary, the minima
are at l = 12, 14, 16, 19, 30, 65, ~. In other regions,
F(l) is as in Fig. 3(b) inset.
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FIG. 5. Coadsorption phase diagram, obtained by
ch~~~ing the sign of the superheavy crossing term. In-
set shows possible modification due to the effective
vacancy mechanism.
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and oversaturated regimes. Moreover, locally
disordered regions in Potts models act as effec-
tive vacancies, and by condensing cause first-
order phase transitions. ' Effective vacancies
are favored by competing helicity (in the fluid dip
region of the phase diagram) and coul.d conceivably
produce tricritical and triple points [insets Figs.
3(a) and 5]. Finally, by treating triangular patch-
es forming a hexagonal array, the possibility of
striped" domain-wall phases would also be in-
cluded.
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A novel cluster-expanded ab initio effective or model. Hamiltonian is described and il-
lustrated for a linear chain. of hydrogen atoms. The method relies on expanding the model
Hamiltonian in a sprn of irreducible cluster interaction. operators. A hierarchy of increas-
ingly accurate ab initio Heisenberg spin Hamiltonians duplicate low eigenvalues of the
more complete Schrodinger Hamiltonian. Finally these Heisenberg models are treated to
obtain the ground-state energy and magnetic susceptibility of the infinite chain.

PACS numbers: 71.10.+x, 33.10.Cs

Most conventional theories of extended systems
rely on a delocalized independent-particle view-
point. We here show a method which adopts the
localized viewpoint (successful in even pre-
quantum-mechanical solid- state theories) and
combines an expansion in terms of clusters (the
localized entities) with ab initio correlated calcu-
lations on the clusters. This straightforward ap-
proach was indicated in low-order approximation

for the Hubbard model by Bulaevski. ' A more de-
tailed description of our method, including its
relation to other more conventional approaches,
is to be reported elsewhere. ' Here we illustrate
the essential features of our method for one-di-
mensional chains of hydrogen atoms.

The method combines ab initio results for small
subunits of an infinite system with a cluster ex-
pansion. The ab initio calculations may be per-
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