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photoionization of the H™ ion and the data are con-
sistent with a Wannier threshold law over the 0.3-
eV region above threshold. We can discriminate
against a simple linear law but we cannot tell the
difference between the Wannier and the modulated
linear law because of the field-ionization back-
ground. The present experiment has provided us
with limits on the parameters which appear in
these hypotheses. These limits can serve as a
guide to theory and to the design of second-
generation experiments.
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It is shown that two light beams interacting in a third-order nonlinear medium undergo
transition from a stationary to periodic and chaotic states, as their intensities are in-
creased. A threshold for the onset of instabilities is calculated and verified by computer
simulations. It is therefore proved that external feedback is not necessary for self-

oscillations in nonlinear optical systems.

PACS numbers: 42.65.Bp

The stability of nonlinear optical systems has
been the subject of an intense study lately, espe-
cially since Ikeda' has shown that a Fabry-Perot
ring resonator containing a saturable absorber
can show instability in regions considered stable
before. Later Ikeda, Daido, and Akimoto? proved
that a ring resonator which contains a third-order
dispersive nonlinear medium undergoes succes-
sive bifurcations as the incident power is in-
creased, leading to chaos or “optical turbulence.”
Similar behavior was later predicted for standing-
wave resonators® and for distributed-feedback
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resonators.? Gibbs et al.®’ recently demonstrated
the main features of these predictions in a syn-
thesized Fabry-Perot resonator.

In all these works the external feedback, sup-
plied by the mirrors of the resonators, was neces-
sary for the onset of self-oscillations. In this
Letter we show that self-oscillations and chaos
can be obtained in an optical system without any
external feedback. Specifically, we consider two
monochromatic waves interacting in a third-order
dispersive nonlinear medium. A steady-state
solution always exists, according to which the two
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waves travel through the medium without any ex-
change of power. However, above a certain
threshold intensity this steady-state solution is
unstable. The continuous output is replaced by
strong oscillations in the outgoing waves, and
eventually by chaos. The fact that all these
phenomena are present in such a simple system
suggests that instabilities, self-oscillations, and
chaos are fundamental processes in nonlinear
optics. Moreover, since the configuration of two
waves interacting in a nonlinear material is one
of the most frequent in laser physics and nonlin-
ear wave mixing experiments the importance of
this finding is evident.

We consider the counterpropagating wave geom-
etry of Fig. 1(a), although our treatment will
trivially hold for the geometry of Fig. 1(b) by re-
defining z -~ 2/cosf. The two fields are taken to
be of the form

E, =A,(z,t)expli(wt - kz)] +c.c.
and
E, =A,(z,t)expli(wt +kz)] +c.c.,

with constant input amplitudes of 7,*'2 and 1,"/2,
respectively. The third-order nonlinear suscepti-
bility is assumed to be real and to obey a Debye
relaxation equation:

TX NL +X L =@ (E?), (1)
where () denotes a time average, « is a constant,
and 7 is the medium response time. Equation (1)
applies directly to most Kerr media, and approxi-
mately to a two-level atom far from resonance.
With use of the slowly varying amplitude approxi-
mation, Maxwell equations yield
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FIG. 1. Two waves interacting in a nonlinear medium.
(a) Counterpropagating beams. (b) Noncollinear con-
figuration.
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where 8 =21wa /cn, and
_1r¢ tr =t
Hii‘—‘;f Ai(z,t')Aj*(z,t')eXp<—T—>dt'. (3)

A time-independent solution for the set (2) is
easily obtained:

A %) =1, expl-iB (I, +2L,)z +i9,],

A°(R) =LY2 expl +iB (I, +21,)z +i®,].

(4)

The phases ¢, and ¢, are determined by the initial
conditions. Note that the intensities /; =4 ;A4;*
are constant and the two waves do not interchange
energy. The mutual influence of the two fields is
only through the phase term which is identical for
equal inputs. Application of this phenomenon has
been recently proposed for enhancing the sensitiv-
ity of Sagnac interferometers.®

We now claim that the steady-state solution (4)
is instable for large input fields. To prove this
point we look for a perturbed time-dependent am-
plitude of the form

Ai(z,t) =A@ +€F (2)e M +€G*(z)e V'],
i=1,2, ®)

with the boundary conditions F,(0) =G,(0) =F (L)
=G,(L) =0. The form of (5) is necessary because
the interaction mixes conjugate terms. Substitu-
ting Eq. (5) into Eq. (2) and linearizing, we get
a system of equations for the perturbations F;,
G;. These equations, together with the boundary
condition, set a condition on 2. Obviously, Re(r)
>0 describes a diverging perturbation and there-
fore unstable solution. Figure 2 depicts the
threshold intensity at which Re(x) =0, as a func-
of the relaxation time 7. Equal input intensities
were assumed. The region below the line is
characterized by a stable steady-state solution,
while that in the shaded region is self-oscillating

”2’?2%5}5“’*

INTENSITY (B 1L)
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RESPONSE TIME (c#ngl)

FIG. 2. Instability threshold intensity vs response
time of the medium. The stationary solution is unstable
in the shaded region.



VOLUME 48, NUMBER 22

PHYSICAL REVIEW LETTERS

31 May 1982

T
(a) 4

NORMALIZED OUTPUT
1

0 20 30 40 50
TIME (ct/noL)

FIG. 3. Intensity vs time for one of the outgoing
waves in a medium with 7=n¢ /C, for (a) BIL =1.9,
(o) BIL =3, and (c) BIL =10. The initial conditions were
the steady-state solution with a small random noise.
Note the different vertical scales.

in spite of the constant input. Instabilities are
easier to get when the relaxation time is equal to
the transit in the medium. In order to gain a bet-
ter understanding of the time-dependent solution,
we have solved Eq. (2) numerically. The solutions
for three different input intensities are given in
Fig. 3 for the case 7 =n,L/c. In all cases the
initial condition was the steady-state solution (4),
to which a small random noise of the order of
1073 or less was added. It is clear that for inten-
sities below the instability threshold, the perturba-
tion is damped (note the scale). Above it, stable
strong oscillations are formed, and, eventually,
chaos prevails.

The physical source of this phenomenon can be
traced to the combined effect of two processes:
(i) When two light beams of different frequencies
interact, the lower-frequency beam is enhanced,
and its gain is maximal for a frequency which is

shifted down by the reciprocal of the response
time. Thus a sideband of one beam can experi-
ence gain by interacting with the counterpropagat-
ing beam. (ii) Sidebands can be reflected by the
grating formed by the main frequency components
if they are within the bandwidth of about ¢/n,L
which characterizes that grating. These process-
es provide the necessary gain and feedback which
explain the buildup of oscillations at a sideband.
The observed optimal conditions for oscillations,
i.e., transit time equal to the response time, as
well as the oscillation period, can thus be de-
scribed qualitatively by these processes. Pre-
liminary studies show that as the intensity is in-
creased, bifurcations and period doubling are en-
countered just as in a device having an external
feedback.?

Experimental observation of the phenomena de-
scribed above can be performed in systems of
atomic vapors. It is evident from Fig. 2 that a
system with a transit time approximately equal to
its atomic lifetime is optimal. An experiment
can be most conveniently done with only one in-
put beam, which is back reflected using a mirror.
The system is then fully equivalent to a two-input
configuration with twice its length. The intensity
required for the onset of instability, i.e., 8IL>2,
is of the same order of magnitude as that re-
quired for obtaining gain in degenerate four-wave
mixing (3IL >7/4), an experiment which has been
demonstrated several times in Na vapor.’

Discussions with S. Shtrikman, A. A. Friesem,
and D. Bensimon are gratefully acknowledged.
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