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The occurrence of sudden qualitative changes of chaotic (or “turbulent”) dynamics is
discussed and illustrated within the context of the one-dimensional quadratic map. For
this case, the chaotic region can suddenly widen or disappear, and the cause and proper-

ties of these phenomena are investigated.
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In dissipative physical systems, such as occur
in plasmas, fluids, acoustics, optical systems,
solid-state devices, etc., it is often observed
that the system settles into a state of sustained
“chaotic” or “turbulent” motion (cf. Refs. 1 and
2 for a partial listing of some recent relevant
physical examples). Furthermore, this chaotic
behavior is now understood to result from the
presence of strange attractors. [A strange at-
tractor may be thought of as a complicatedly
shaped surface in the phase space of the dynam-
ical variables, to which the system orbit is as-
ymptotic in time and on which it wanders in a
chaotic fashion (cf. Ott3 for a recent review), |
The features of such states have recently been
shown to be well described by surprisingly simple
nonlinear dynamical models (e.g., the one-dimen-
sional quadratic map to be discussed below). In
many experiments, changes in the system behav-
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ior are studied as some parameter of the system
is varied. Thus, much theoretical interest has
focused on characterizing the evolution of the
dynamics as a function of a system parameter.*™®
In this paper we investigate sudden qualitative
changes in chaotic dynamical behavior which oc-
cur at parameter values at which the attractor
collides with an unstable periodic orbit. We call
such events c7ises.

In order to fix ideas and provide a clear, sim-
ple illustration of the phenomenon in question,
we first consider an elementary case involving
the one-dimensional map given by

?=F(x,, O). (1)

For C< -1, no fixed point of the map exists, and
all orbits are asymptotic to x=—w, At C=-7 a
tangent bifurcation occurs at which a stable and
an unstable fixed point are created. It is well

Xps1=C=x,
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known”!%1! that as C is increased past — 3, the
stable fixed point undergoes period doubling fol-
lowed by chaos. [For C>- 3, Eq. (1) can be
transformed by a change of variables to the logis-
tic map, x,,,=7x,(1-x,); note, however, that
the logistic map does not possess a tangent bi-
furcation analogous to that of Eq. (1) at C=~ %
due to its nongeneric behavior at ¥=1.] As Cis
increased past C=2, the chaotic attracting orbit
is destroyed, and all initial conditions lead to or-
bits which approach x = -« (corresponding to the
logistic map with » > 4), Figure 1 gives a bifur-
cation diagram illustrating the above, In this
figure we have plotted the position of the unstable
fixed point created at C=—=4, x==x4,==3-[1%
+C]¥2, as a dashed curve. For 2=>C=>-1%, and
for almost any -initial point in the range |x|< x*
the orbit generated by (1) is asymptotic to the
bounded orbits shown in Fig. 1. Conversely, any
point in |x|>x, generates an orbit which is as-
ymptotic to x=—e. Thus, for — 3 <C <2, the
range |x|< x4 is the basin of attraction for bound-
ed orbits, while Ix|> x, is the basin of attraction
for x=—= . Note from the figure that destruction
of the chaotic orbit at C=2 coincides with the
intersection of the chaotic band with the unstable
fixed point x=-x,. To understand why this hap-
pens, consider C to be slightly larger than 2. In
this case, a typical initial condition in the region
which was chaotic for C slightly less than 2 will
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FIG. 1. Bifurcation diagram for the map Eq. (1).
The dashed curve is the unstable fixed point. This
figure is generated by first preiterating the orbit from
an initial condition and then plotting the subsequent
orbit in x for a given C, for many different values of C.
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generate a chaotic-looking orbit (a chaotic tran-
sient®) until the orbit puts x below —x . After
this happens, the orbit rapidly accelerates to
large negative values of x.

One of the points which we wish to convey in
this Letter is that such intersections of a chaotic
region and a coexisting unstable orbit are preva-
lent in many circumstances and systems and
lead to discontinuous qualitative changes in the
character of the long-time behavior of the orbits.
For example, in the case of the two-dimensional
Henon map (x,,,=1-oax,%+y,,¥,,,=0.3x,), we
find, in a certain range of the parameter, a, two
strange attractors, each with its own basin of
attraction. However, as the parameter is raised,
a critical value is reached. At this critical value
one of the attractors collides with an unstable
(saddle) periodic point on the boundary separat-
ing the basins of attraction of the two strange
attractors. This collision marks the death of
that strange attractor and its basin, and, for
values of the parameter immediately above this
critical value, that strange attractor is gone.
Further discussion of this case will appear in a
future publication.'? In addition, similar crisis-
induced deaths of strange attractors and their
basins are probably present in several reported
ordinary differential-equation examples wherein
hysteresis occurs (e.g., in the Lorenz system,
as discussed by Kaplan and Yorke,* in a model
of Josephson junctions given by Huberman and
Crutchfield,” and in the nonlinear coupled—plas-
ma-wave problem of Russell and Ott'3),

The example of Fig. 1 concerns a crisis in
which the unstable orbit is on the boundary of the
basin, and the crisis causes termination of the
attractor and its basin (we call this a boundary
crisis). When the collision occurs within the ba-
sin of attraction (we call this an interior cvisis),
a sudden expansion of the attractor almost always
occurs. Note that for a boundary crisis the basin
of attraction disappears discontinuously, rather
than by shrinking continuously to zero (e.g., at
the crisis point C=2 of Fig. 1, the basin of attrac-
tion for the bounded chaotic orbit is |x| <2). As
an example of an interior crisis, consider Fig. 2.
This figure is an enlargement of the bifurcation
diagram of Fig. 1 for C between 1.72 and 1.82.
This range encompasses the region where stable
period-three orbits appear by tangent bifurcation.
Also shown in Fig. 2 are dashed curves denoting
the unstable period-three orbit created at the tan-
gent bifurcation. Note from Fig. 2 that for a_
range of C less than a certain critical value, C _,
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FIG. 2, Blowup of the bifurcation diagram of Fig. 1
in the region of the period-three tangent bifurcation.
The dashed curves denote the unstable period-three
orbit created at the tangent bifurcation.

chaos occurs in three distinct bands, but that,
when C increases past C_;~1.79, the three cha-
otic regions suddenly widen to form a single band.
Furthermore, this coincides precisely with the
intersection of the unstable period-three orbit
created at the original tangent bifurcation with
the chaotic region. We have noted similar crisis-
induced widenings associated with the other tan-
gent bifurcations occurring in the chaotic range
(i.e., C.<C <2, where C, is the accumulation
point for period-doubling bifurcations of the orig-
inal stable fixed point).

Figure 3(a) shows the map (1) for a value of C
slightly less than C,; The three chaotic bands
are indicated on the x, axis as the intervals [x,°,
%], [%° %°], and [x,° x,°]. Also, the unstable
period-three points, x,, x,, and x_, are indi-
cated as crosses. The rightmost boundary of the
chaotic region, x,° is clearly the image of x=0,
since F(x, C) is maximum at x=0. Thus, x,°
=F(0, C). We denote F composed with itself »
times by F™(x, C); i.e., F™(x, C)=F (F"™(x,
C),C), and F®(x, C)= F(x, C). Examination
of Fig. 3 then shows that x,°=F™(0, C), n=1, 2,
3, 4, 5, and 6. Now consider x,°. At C=C,,
x,°=x,, and hence x,°=x.° or

F@(0, Cyy)=F (0, C,y). (2)

Equation (2) provides a means for the accurate
numerical determination of C«,. We obtain C,,
=1.790327492....

For C slightly larger than C,,, the unstable
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FIG. 3. (a) Schematic illustration of the quadratic
map, Eq. (1), for a value of C slightly less than C- ;.
The three chaotic bands are indicated on the x, axis
with boundary points x,%, x,°, x4, x,°, %0, and xs%.
Also shown as crosses are the components of the un-
stable period-three orbit, x,, x;, and x,. (b) Schematic
illustration of the x, axis for C slightly larger than C.3.

orbit x,, x,, x,will lie within the bands [x;°, x,°],
[x,° x°], [%,° x°] [cf. Fig. 3(b)]; x, will be
slightly less than x;°, x, will be slightly greater
than x,° and x, will be slightly less than x,°. An
orbit started within one of the regions [, x,],
[x5, %.°], [x,° x,] will typically éinitially move
about in a chaotic way, cycling between the three
regions, as in the case C < C,,. After a while,
the point will eventually fall within one of the
small regions [x,, x°], [x° x,], [%,,%°]. It
will then be repelled by the unstable period-three
orbit and be pushed into the formerly empty re-
gion.

Let f denote the fraction of time which an orbit
spends in the formerly empty regions, [x.°, x,°]
and [x°, x,°]. Consideration of the action of the
map leads us to suspect that this fraction will
have a functional dependence on C~ Cx,= ¢ which
is approximately of the form (0< ¢ <«1)

(€)= c2P(Inc)+k,c/? In(k,/c), (3)

where &, and k, are constants, P is a periodic
function, P(&)=P(¢+ @), and the periodicity « is
given by a =~1np,

B =F,(xa> C*s)F,(xb’ C*g)F,(xc’ C*s)a

with F’=dF/dx. This yields a@~1,312, The
origin of (3) will be discussed in a future publi-
cation.!? Note that the first term in (3), denoted
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FIG. 4. f(c)/c'/?vs Inc. c=C— Cs.

f.(c), is scale invariant, fl(Bc)=Bl/2fl(c). Fig-
ure 4 shows a plot of ¢ /2f(c) vs lnc obtained by
numerical iteration of Eq. (1). It is seen that
the result is in agreement with (3), including the
predicted periodicity «a.

Now we turn to a consideration of the Lyapunov
number of the map at C=C_;. For a C=C_; both
x4 and x,° map to x,° (x,°= —x,°. In this case,
after three iterations, the middle interval is sym-
metrically stretched, folded in two, and mapped
back onto itself. To the extent that the map F has
small curvature in the side intervals [x°, x,°],
[x,%,x,°], the map F‘® acting on one of the three
intervals is approximately parabolic and stretches
and folds the interval in two and then maps it on-
to itself. Thus, appropriate to this situation, we
predict that the Liapunov exponent of F is ap-
proximately 1n2 and that the Liapunov exponent
for F is approximately (In2)/3. In fact, it can be
shown that In2 is also an exact upper bound for
the Liapunov exponent of a map like F® (cf. Ref.
12 for a simple proof). Numerical calculation in-
deed reveals that Inx, the Liapunov exponent for
F, is very close to its upper bound,

Inx = [(In2)/3](1 =4 X10™%),

Even more precise agreement is found for the
case C=C,,, corresponding to the crisis point
following the tangent bifurcation to a period-five
orbit, :

Inx =~ [(In2)/5](1 - 4 X10"®),
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In conclusion we have identified two types of
crises, boundary cvises and intevior cvises, and
we have illustrated and investigated each within
the context of the quadratic one-dimensional map
(cf. Figs. 1 and 2). We feel that boundary crises
are the principal means of sudden destruction of
chaotic attractors and their basins in R", and
that interior cvises are the principal causes of
sudden expansions in the size of chaotic attrac-
tors.!*
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40ther means of sudden destruction of bounded chaotic
attractors and their basins and other sudden expansions
of chaotic attractors do occur, but we conjecture that
they are exceptional and depend on special symmetries.



