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field by surface charges. If the experimental re-
sults are interpreted in terms of surface effects,
the broadening if the DTA signal towards lower
temperatures indicates a lower disordering tem-
perature of the dipoles in the surface region as
compared to the dipoles in the interior. The num-
ber of dipoles in the surface region may be taken
from the area under the broadened shoulder of
the endothermal signal. Provided the latent heat
of disordering is identical to that of the bulk, the
fraction of "surface dipoles" is estimated to be
about 30/p to 5(P%%d . Thi svalu ecoincide swit h the
number of NaNO, molecules located at the free
surface of a 5-nm crystal. In other words, sur-
face effects are restricted to about one monolay-
er. There is little evidence for the existence of
"dead layers'" at the surface and for particle-
size effects on the disordering of the "volume
dipoles" as concluded from the unshifted peak
temperature.

The interpretation. of the experimental data by

analogy to superparamagnetism appears unlikely

as it requires the "surface" and "volume" dipoles

to disorder simultaneously. Simultaneous dis-
order of both types of dipoles implies an enhanced
dipole coupling in the surface region which ap-
pears implausible in view of the reduced coordi-
nation number. In addition, it would be hard to
understand in terms of this model why the DTA

peak is broadened but not shifted.
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A simple way has been discovered to put model pseudopotentials, V(r) =Z, ~Y, ) V, (r)
x (Y&~ ~, into a. form which reduces the number of integrals of V(r) required for an energy-
band calculation from mn(n+l)/2 to mn for each/ in the sum (where n is the number of
plane waves used in the expansion and ~ the number of points in the Brillouin zone at
which the calculation is performed). The new form may be chosen to improve the accuracy
of the pseudopotential when used in other chemical environments.

PACS numbers: 71.10.+x, 31.15.+ q, 71.25.Cx

Pseudopotentials may be divided into three
classes, of which one is empirical' and the other
two are based on first prinicples. One of the first-
principles pseudopotentials is obtained by adding
some core functions g, to the wave function P to
obtain a smooth pseudo wave function,

and in its most general (non-Hermitian) form is
[see Austin, Heine, and Sham' (AHS)]

vp, =v +Z, l p, &(+,I,

where F,(r) is an arbitrary function. By substi-
tuting Eq. (l) into the Schrodinger equation, the

relation

is obtained. Zwicker' has shown that in general
the AHS pseudopotential is nonvariational, i.e.,
first-order errors in a trial pseudofunction p,
cause first-order errors of either sign in the en-
ergyE, . The original Phillips-Kleinman (PK)
pseudopotential~'

(4)

has a nonunique p because o.', =(&, I p& makes
p' =y+Q, P, g, a solution of Eq. (l). Zwicker'
was able to show that Vp, is variational and

1982 The American Physical Society 1425



VOLUME 48, NUMBER 20 PHYSICAL REVIEW LETT jERS 17 MAY 1982

when used with a variational p, causes p to be-
come that unique p which most closely approxi-
mates p, . Furthermore, it is obvious from

I 0 "&=I o,&-E.&p. l v, &l 4.& (5)

V...(r) -Z I
I',.&A, (E)&I',.I «r

V lm (6)
—Z/r+V„, (r) for r&R

where V»i is the Coulomb and exchange potential
due to the valence electrons, & is the valence

that the trial PK wave function is always ortho-
gonal to the core eigenfunctions. The AHS pseudo-
potential may also be made variational by making
it Hermitian by setting E, ~A, g„with A, being a
constant. In that case it is easy to see that P, is
not orthogonal to the P, unless p, has sufficient
variational freedom in the core region to make it
so. Since the whole purpose of using a pseudopo-
tential is to eliminate the need for core variation-
al freedom in p„we conclude that of this class
of pseudopotentials, the PK form is the most ef-
ficacious. Pseudopotentia1s in this class have
three shortcomings: (1) For valence functions
which are orthogonal to all core functions such
as axygen 2P or iron M, Vp, reduces to V; about
this nothing can be done. (2) VP, depends ex-
plicitly on the eigenvalue E. This ultimately
arises from the nonorthogonality of orthogonal-
ized plane waves and causes no more trouble than
the off-diagonal energy dependence of the secular
equation obtained from any expansion in nonorthog-
onal basis functions. (3) Outside the core region
the normalized p i.s proportional to but not equal
to P. Thus to perform an accurate self-consistent
calculation, one must construct g using Eq. (1) or
(5) and then renormalize it.

The "model" pseidopotential of Abarenkov and
Heine' is based upon the idea that the core is a
black box from which the valence wave functions
emanate with some logarithmic derivative and
that any core pseudopotential which yields that
logarithmic derivative is a valid first-principles
pseudopotential. Thus the model pseudopotential
may be written'

charge, and A, (E) is a constant (in space) function
of E chosen to make the pseudofunetion logarith-
mic derivative equal that of the true eigenfunction
at several atomic eigenvalues. To a high degree
of accuracyA, (E) may be linearized:

A. , (E) =A, +B,E. (7)
This model pseudopotential contains two defects
which in principle are irreparable although in
practice are not too serious. Because the aver-
age potential in an infinite crystal is arbitrary,
E in Eq. (6) is not uniquely determined when V&
is used in energy-band calculations. Note that
this problem does not arise with VP, because
E -E, is independent of a constant shift in the
crysta1 potential. A second problem is the non-
equality of the normalized pseudo wave functions
and true wave functions for r)R&. Because in
this case the pseudofunction is not obtained from
the wave function by the addition of core orbitals,
there is no way to construct the wave function
from a knowledge of the pseudofunction.

Recently a giant step forward in model pseudo-
potentials was taken by Hamann, Schluter, and
Chiang' (HSC) who inverted the Schrodinger equa-
tion to obtain a model pseudopotential,

= V„~(r) +Z,.l I',.) v, '"(r)&y,.l, (6)

where V~" (r)--Z/r for r&r, (where r is a
core cutoff radius). The real and pseudo wave
functions of V„are identical (not merely pro-HSC

portional) for r &r, . Thus the need to calculate
the true wave function is minimized. More im-
portantly, it can be proven' that as a consequence
of the identity of the functions, the logarithmic
derivatives and the first energy derivatives of
the logarithmic derivatives of the true and pseudo
wave functions are identical for r)x, . Hence the
energy dependence of V„ is second order and
in most eases may be ignored. Kleinman' has
shown how V„,i2 (r) may be obtained, which
when used in the Schrodinger equation yields
eigenvalues of the Dirac equation with j=i*—,'.
Thus very accurate self-consistent relativistic
energy-band calculations ean be made with the
following simple model pseudopotential used in
the Schrodinger equation'.

V. =V...(r) +Z,.I
I',.)I v, (r)L -5.v, "(r)]&I",„I,

where

so HSC rr HSC]
Vl —

21 2
LVl+&l2 " l -1/2 (10)

2E +2

l426



VOLUME 48, NUMBER 20 PHYSICAL REVIEW LETTERS 17 MAY 1982

When attempting to use Eq. (9) for an energy-band calculation in which our basis functions were ex-
panded in plane waves, we were thwarted by the huge number of integrals necessitated by the semilocal
(i.e. , nonlocal in angular coordinates but local in radial coordinate) part of the potential. Note that the
integral of I Y, )V(v)(Y, I between a pair of plane waves is proportional to

fj, (kv)V(v)j, (k'v)v'dvP, (cost/» ),
where the j, are spherical Bessel functions and P, (cosg» ) is the Legendre polynomial of the angle be-
tween the wave vectors k and%'. If one has n different wave vectors at vvl points in the Brillouin zone,
then for each E one has vvln(n+1)/2 separate integrals to evaluate. In a thin-film calculation n can be as
large as 1000 and rn about 20, yielding 10' integrals. Note that this problem does not arise with the
fully nonlocal pseudopotentials of the AHS or PK type. The integral of I $,)(p, l, appearing in Eq. (4),
between a pair of plane waves is proportional to

fj, (kv)P, (v)r'dv fj, (k'v)P, (v)r'dr P, (cos8» );
this factorization into a product of integrals involving only a single k requires the evaluation of only
mn separate integrals for each g, .

In order to circumvent this difficulty we first add and substract a completely arbitrary function
V~(v) from the relativistic form of Eq. (8) Ior equivalently from Eq. (6)] to obtain

V,' ""=-V„,(r)+V, (v)+E,.I Y,.»V„„,(Y,.I, (12)

where 5V„», =V,„», (v) —V/, (v) Wi.th@'„», (r) =p„»,(v)Y, (&, p), we write down a nonlocal pseudo-
potential to replace the semilocal term, Vs l,

'=""', in Eq. (12):

V /=l+1/2(
) ~~ I Vial/2( )l+l/2. m&(( )l+1/2. m ' l+1/2I (13)

lm (( ) l+1/2, mls i+1/2I ( ) l+1/2( m)

The superscript zero indicates that (4'0)„», is the psuedo eigenfunction for which Vs L' '""was calcu-
lated. Note that

VNL' '""I(4")l,i/2, m & =I~Vl "»2( ')l "»2.m'&

and that

so that '
I(C' )l "»2. &-IYl &&V/ .l/. I(V')l „/2&-I&V, „„( )l „„, )

vNL I( ) l ' »2, m ) —vs L»'I(@'), „„, ). (14)

TABLE I. Dirac-equation eigenvalues for W and two of its ions and the errors
obtained by using the semilocal and nonlocal pseudopotentials. There are no er-
rors in the W+ pseudopotentials because they were constructed from that con-
figuration. There are no bound 5f states in the 5d 6s configuration.

Dirac
(ev)

W (5a46s 2)

~(SL)
(mev)

~(NL)
(mev)

W+(5d46s )

Dirac
(eV)

W++(5d 6s )

Dirac A (8L) 4 (NL)
(eV) (meV) (meV)

6s(/p
6P~/2

6P3/2

5"5/2
5f5/2
5fv/2

—5.890
—1.988
—1.491
—5.144
—4.421

—13

—14
—15

—12.5 09
—7.710
—6.897

—12.415
—11.644
—0.981
—0.9 81

—19.637
—14.084
—12.962
—20.589
—19.762
—4.404
—4.400

42
33
31
33
35
11
10

33
26
24

8
11
12
11
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with. Z =6, n =1.75, P =1.8, and ) =0.25. Both
Vs L and V~L yield the same eigenvalues as the
Dirac equation for this configuration. When trans-
ported to the 5d'6s' atomic and 5d'6s' doubly ion-
ized configurations the eigenvalues of these
pseudopotentials differ from the Dirac eigenval-
ues by the small amounts listed in Table I. The
parameters in VL, have been chosen to make the
VNL eigenvalues more nearly correct than the Vs L.

This particular choice of V& makes VNL worse
with respect to Vs L when transported to configura-
tions with a different number of d electrons. How-
ever, with a few more parameters we were able
to construct a VL, which yielded a VNL that was
better than VSL for both classes of configurations.
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FIG. 1. The ionic pseudopotentials &)g f/2 (r) and
V&(r) ail of which approach —2Z/r for large r

By this trivial replacement of V&L by the factor-
ized VNL we reduce the number of plane-wave in-
tegrals" required for each l from mn(n+1)/2 to
mn. Note also that when the pseudopotential is
transported to another atomic configuration or to
a crystalline environment (4"), „„„is replaced
by O, ,», ~ and Eq. (14) does not hold. Because
one has a great deal of freedom in choosing VNL

(due to the arbitrariness of V~), the fact that
) is not equa], to Vs ' '""

&& ~c', ,», ) may be used to reduce the error in-
curred in transporting the pseudopotential.

We have constructed relativistic 6s, 6p, 5d,
and 5f pseudopotentials for singly ionized tungsten
in the configuration" 5d'6s'. The Dirac eigen-
values listed in Table I were obtained with use of
the Wigner interpolation formula for the correla-
tion potential and the relativistic"'" Kohn-Sham
exchange potential. The pseudopotentials which
are displayed in Fig. 1 were constructed with cut-
off functions' of the form exp[- (&/&,)"] with r,
=1.20, 1.75, 1.85, and 1.85 bohrs for the 5d, 6s,
6p, and 5f potentials. Vr, was taken to have the
form (in rydbergs)

=
2Z 3 5 3~5

1 —exp — — +y& exp ——
Q

(15)
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