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MeV. The slow component agrees, as shown in
Fig. 3(a), with the energy spectrum of the neu-
trons decaying from the non-GQR continuum
region with 20 MeV excitation energy, where no
strong giant resonances are excited in the pre-
sent (n, o. ') reaction. The fast component cor-
responds to the population of the excited levels
around 3.5 MeV in '"Sn. Direct escape of the
unbound neutron particle out of the GQR leads to
such one-hole states as (1g,~,) ', (2d, y, )

(2d, ~,) ', and (3s, ~,)
' in '"Sn. The population

strength for the fast neutrons following the GQR
in '"Sn is in accord with the spectroscopic
strength distribution for the single-hole states
populated by the reaction '"Sn(p, d)'"Sn, "as
shown in Fig. 3(b).

In short, the present (o, o. 'n) coincidence work
demonstrates that the GQR in a medium-heavy
nucleus shows up selectively above the continuum
by measurement of inelastically scattered parti-
cles in coincidence with decaying fast neutrons
at backward angles with respect to the recoil
axis. Although the fast-neutron branch is a
small fraction of the major nondirect spreading
process, such direct-escape neutrons carry in-
deed a microscopic particle-hole feature of the
GQR.
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Previous interacting-boson-approximation studies of deformed nuclei have used differ-
ent forms of the quadrupole operator in the Hamiltonian and F2 operators. A revised
formalism is proposed which employs consistent operators and embodies a simpler
Hamiltonian. It yields improved agreement with the data for deformed nuclei, a number
of parameter-free predictions for transition regions, a specific form of the O{6) limit
which agrees with that found empirically, and a closer relation to the neutron-proton
version of the model, IBA-2.

PACS numbers: 21.60.Fw, 21.60.Ev, 23.20.Lv

The interacting boson approximation" (IBA) rep-
resents a significant step forward in our under-
standing of nuclear structure. It offers a simple
Hamiltonian, capable of describing collective
nuclear properties across a wide range of nuclei,
and is founded on rather general algebraic group-

theoretical techniques which have also found re-
cent applicatian to problems in atomic, mol. ecular,
and high-energy physics. " The application of
the phenomenological version of this model (IBA-
1) to deformed nuclei is currently a, subject of
considerable interest and controversy. ' Recent
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where the first two terms provide the rigorous
SU(3) limit, while the third breaks this symmetry
and raises the energy of the first excited K"=0'
band above the first K'=2' (y) band. This is in-
deed the empirical situation found in the majority
of deformed nuclei. The quadrupole operator has
the form

Q=(s d+d s)"'+(Xo/W5)(d d)"' (2)

where Xq, the ratio of the &n„=+ 1 and 0 terms,
can in principle vary between the values 0 and
—(35)' '/2, associated with the O(6) and SU(3)
limits, respectively. However, in IBA-1 calcula-
tions to date, the parameter p~ in the quadrupole
operator of the Hamiltonian has always been de-
fined to take the SU(3) value of —(35)'~'/2. In con-
trast, in the E2 transition operator, which is
given by T(E2) = nQ, where o,'determines the ab-
solute scale of the predicted B(E2) values, Xz
has been allowed to vary to fit the empirical rela-
tive B(E2) values. In fact, it has recently been
shown' that these data restrict the value of Xz in
the E2 operator to the range —1.2- Xg ~ —0.5
across all deformed rare-earth nuclei. Thus, in
the existing framework, different forms of the
quadrupole operators in H and T(E2) must be
used. It is, however, clearly desirable to use
consistent forms in both cases and the B(E2) re-
sults just cited show that this constraint implies
a reduction in the magnitude of yo in the Q Q

studies" have revealed some of the global cha-
racteristics which must result from the applica-
tion of the model to such nuclei, and it has been
shown that these correspond well to the available
empirical information. Nevertheless, these stud-
ies have also revealed a seeming inconsistency
in the formulation of the model. The deduced pa-
rametrization of the quadrupole operator, neces-
sary to reproduce empirical B(E2) values, im-
plies a form for this operator which is consider-
ably different from that assumed in the Hamilton-
ian. It is the purpose of this Letter to propose a
revised formulation which removes this incon-
sistency and results in equivalent or improved
agreement with the data with fewer free param-
eters. In addition, it still yields the three limit-
ing symmetries of the model, allows a simpler
treatment of transition regions, and is more
closely related to the neutron-proton version of
the model, IBA-2.

The IBA-1 Hamiltonian used for deformed nu-
clei to date has been

H = —KQ Q —x'L L+ ~"P ~ P,

term of the Hamiltonian. The effect of such a
reduction will be to decrease the size of the 4n„
=+1 term relative to the ~n„=+ 2 term, arising
from Q Q. Since the effects of the P P term in
Eq. (1) arise from a similar mechanism, it is
reasonable to propose a new Hamiltonian which
is simply

H = —sQ' Q'- ~'L ~ L,
where Q' is defined by Eq. (2), but yo is now
treated as a free parameter within the range im-
plied by the limiting symmetries, and T(E2) is
defined by the identical form of Q'. Before com-
paring the results of this revised formalism with
earlier IBA-1 calculations, it is worth noting
that the form of the Hamiltonian of Eq. (3) results
in a particularly simple parametriz ation. Since
the L L term is diagonal, the relative off-diag-
onal interactions are totally specified by Q''Q'.
Given that the basis states are initially degenerate
(e, = 0), the final wave functions can depend only
on g, for a given boson number N. Moreover,
all relative B(E2) values are also uniquely speci-
fied by the same Xq. The strengths ~ and cr then
act only as scale factors on the energies and
B(E2) values, while K' determines the effective
moment of inertia in the bands. Thus for a given
nucleus, Xq can be uniquely determined from a
single B(E2) ratio, and the study of Ref. 6 indi-
cates that a suitable one, frequently known em-
pi, rically, isB(E2;2&'-0, ')/ B( E2; ,2'-0, ').
All other relative B(E2) values, and the ordering
and relative separation of the predicted bands,
then follow unambiguously, and without further
parametrization. This coupling of the E2 operator
and the Hamiltonian thus differs essentially from
the earlier formalism in which variations in Xz
to fit E2 transition strengths left energies and
wave functions unaffected. When values of Xq are
now extracted in the manner just described, it is
found that Xq is again restricted to a narrow
range of values: in this case —1.5 ~

X@
~ —1.0.

This range then automatica/ly predicts the first
K' = 0' band to be above the y band in energy,
and, as pointed out in Ref. 5, this is indeed the
case in the majority of deformed nuclei.

It is now instructive to compare the predictions
of the two frameworks in more detail. The most
thorough test to date of the original IBA-1 Hamil-
tonian in deformed nuclei is that of "'Er,' and
these earlier calculations are compared with
those arising from the modified Hamiltonian in
Fig. 1. The Xz parameter was determined as
—1.1, and the parameters & and w' were chosen
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to give the empirical moment of inertia in the
ground (g) band, and the y band energy. It can be
seen that the bandhead energies in the two calcula-
tions are effectively identical. In addition, the
relative B(E2) strengths between the bands are,
in most cases, equivalent in the two calculations.
The two differences that emerge in the new for-
malism are the prediction of an even weaker
0,'-0, ' branch, and a stronger 0,'-0, ' branch.
The former is actually in better agreement with
the data, while no conclusion can be reached con-
cerning the latter since the experimental limits
for these transitions are consistent with either
result. One of the major criticisms4 of the earlier
study' was that the effective AK = 2 mixing between
y and ground band was underestimated by a factor
of 3. In response, it was argued' that the matrix
element involved (= 0.5 keV) was so small that
this discrepancy could not be considered signifi-
cant. Nevertheless, this feature ean be reexam-
ined in the new framework. Figure 2 shows the
Mikhailov plot, where the slope of a given line is
simply related to the b,K = 2 mixing matrix ele-
ment, while its intercept at I, =I& is related to
the intrinsic y -g E 2 matrix element. While the
difference of a factor of 3 in the slopes of the
lines from the old eal.eulation and the data is
evident, the line representing the predictions of
the revised Hamiltonian now shows excellent
agreement with the data. Note that this improve-
ment results from a formalism involving one less
parameter than before.

As pointed out earlier, it is straightforward to

FIG. 2. Mikhailov plots for y—g transitions in Er.
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FIG. 3. The y g band mixing parameter z . Solid
lines and triangles, current study; dashed lines and
crosses, Bes et al. , Ref. 7; circles, experimental
values.

extract Xq values for various nuel. ei and hence to
extract the effective y-g ~K =2 mixing matrix
elements in each case. The results of this pro-
cedure are shown in Fig. 3, using the al.ternative
formalism of the band mixing parameter z&. The
agreement with the data is remarkable, and in
fact, none of the discrepancies is as large as a
factor of 3. Th.e earl. ier predictions of Bes et al. '
are also shown, which result from a microscopic
random-phase- approximation calculation based
on Nilsson orbits. The trends of the two sets of
predictions are evidently very similar.

Whil. e the focus here so far has been on de-
formed nuclei, it is interesting to inquire whether
the present simplified formalism retains the
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generality which was an essential and attractive
feature of the earlier one, and thus whether it
contains the other two limiting symmetries. For
SU(5) nuclei, as before, a term in e,n„can be
added, while if X~ is chosen as zero, the quadru-
pole operator in H becomes a generator of O(6),
and hence a, level scheme with O(6) symmetry re-
sults. However, there are now only two terms in
the Hamiltonian while the original formalism con-
tained three, the L I and P'P terms, and an
"octupole" term [= (d d )"']. The question there-
fore arises as to whether the results for a speci-
fic O(6) nucleus, such as."'Pt,' can be repro-
duced. In the original formalism, the eigenvalue
expression is

E = ~A(N —0')(N+ c+4)+B~(r+ 3)+CL(L+ 1),

where A, 8, and C are constants related to the
strengths of the three interactions employed. In
the revised formalism, the O(6) eigenvalues are

E =A'f(N —v)(N+ (r+ 4)+ w(T+ 3)) + C'L(L+ 1),

where A ' = 2 K and C' = —~'. Thus the current for-
malism produces a special case of the O(6) limit,
in which'. =48. It is remarkable that the param-
eters used in Ref. 8 to fit the '"Pt levels were

A. = 185 keV and 8 = 42 keV, and thus almost in
the 4:1 etio, Since the wave functions and E2
operators in the two calculations are the same,
the BN2) values will be also. An interesting
open question is whether this specific form of
the O(6) symmetry corresponds to that manifested
empirically in other O(6) nuclei.

In describing the transition from the O(6) to
deformed regions, previous calculations' have
introduced a progressively larger Q Q term into

the O(6) Hamiltonian. Clearly, with the new
Hamiltonian, it can be hoped that such a transi-
tion can be simulated simply by increasing the
magnitude of X. In fact, it is easy to study the
effects of such a procedure on the B(E2) values
since contour plots of any B(E2) ratio can be con-
structed, as a function of X~ and N. An example
of such a plot is given in Fig. 4, for the ratio
B(E 2; 2&' - 0 +)/B (E 2; 2 ' - 0 +), which takes the
value zero in the rigorous SU(3) and O(6) limits.
In deformed nuclei, N is typically 12-16, and this
B(E2) ratio ranges from 0.01 to 0.04, correspond-
ing to X@ values between —1.0 and —1.5. In '"pt
(N =6) it is effectively zero, corresponding to Xz
=0, which is the O(6) value. Thus, an essentially
parameter indepe-ndent prediction of Fig. 4 is the
existence of a "peak" in this ratio between these
two regions. In fact, in the Os nuclei this ratio
has empirical values of = 0.1.

To summarize, it has been shown that the pro-
posed revision to the IBA-1 formalism provides
a description of both deformed and O(6) nuclei,
comparable to earlier calculations and with fewer
free parameters. Contour plots of the type shown
in Fig. 4 offer the intriguing possibility to pre-
dict, without specific parameter fitting, the over-
all behavior of any B(E2) ratio across the transi-
tion from deformed to O(6)-like nuclei. Never-
thel. ess, it should be emphasized that the simple
Hamiltonian of Eq. (3) may not prove adequate in
providing detailed fits to specific nuclei through-
out these regions. Rather, the additional terms
of the original Hamiltonian may have to be re-
introduced as, albeit, smaller perturbations in
any specific calculation. However, given the im-
proved agreement of many features of the calcu-
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lated spectrum of "'Er, without any such addition-
al terms, it seems clear that this Hamiltonian
represents a far better starting point for a cal-
culation in the IBA-1 basis.

Finally, one additional point can be made. The
use of a Q Q term with varying ){c is, of course,
directly analogous to the procedure employed in
the IBA-2 Hamiltonian. Thus the proposed re-
vision brings the two Hamiltonians much closer
together in form, and may therefore lead to an
improved ability to project the microscopic de-
scription available for the IBA-2 parameters into
the IBA-1 basis. Such an outcome would be high-
ly desirable, since it would provide an effective
microscopic basis for the model while maintain-
ing the simplicity and underlying symmetries in-
herent in the IBA-1 formalism.
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Angular Distributions for a Model System of Nonadiabatic Molecular Collisions:
The Quenching of Na*(3p) by 82 and D2

%. Reiland, U. Tittes, and I. V. Hertel
Institut jur MolekulPhysik, Ereie Universitat Berlin, D-1000 Berlin 33, Germany

(Received 18 September 1981)

Angular distributions for the electronic to vibrational-rotational and translational ener-
gy transfer process Na" (3p) + H„D, —Na(3s) + H2(v', j'), with product energy analysis have
been measured for the first time. The differential cross sections are forward peaked,
constant but small between 35' and 160', and very slightly increasing at 180'. The observa-
tions can be qualitatively understood by a simple model for the particle motion on the at-
tractive A2B2 excited-state surface with a hop to the repulsive g A.

&
ground state.

PACS numbers: 34.50.Ez, 34.50.Lf, 82.20.Rp

The quenching of atomic resonance excitation by
small molecules is one of the most elementary

processes in nonadiabatic molecular collision
physics. Powerful modern theoretical and experi-
mental. methods' justify the hope for a fully quan-
titative understanding of such processes, and this
transfer of electronic excitation energy into heavy-
particle motion is one of the key questions of
photochemistry. The process

Na*(3'P) + H, (v = 0,j)—Na(3'S) + H, (v', j') (1)

at initially thermal relative kinetic energies F,
may be considered as a model system, tractable
by both theory and experiment. A. b initio potential
surfaces for this and other systems are now avail-

able,"and semiclassical' as well as rather rig-
orous quantum mechanical scattering calculations
are possible. ' Pioneering state-selective experi-
ments in cell.s' were restricted to integrated
cross sections and more complicated systems.
The latter is also true of the first angular-re-
solved experiment by Silver, Blais, and Kwei. '

We want to report here the first experimental
angular distributions with product energy analysis
for the model process (1). The experimental
technique is essentially that used previously" for
the study of forward-angle averaged energy-
transf er spectra. For the present differential-
eross-section measurements the energy and angu-
l.ar resolution has been drastically improved by
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