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Surpassing the Amplifier Limit for Force Detection
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A force-measuring system composed of a macroscopic harmonic oscillator, mechanical-
electrical transducer, and linear amplifier is described and the sensitivity is calculated
for a back-action evasion" mode of operation. It is shown that it is possible to surpass
the standard amplifi. er li. mit with this devi. ce, and the specific requirements to do so are
given. These results may also apply to a quantum-limited amplifier and thus give the re-
quirements to perform quantum-nondemolition measurements.

PACS numbers. ' 03.65.-w, 06.30.Gr, 07.50.+ f

Recent investigations' of the quantum mechani-
cal limitations of force-measuring systems have
suggested a new type of measurement strategy
called back-action evasion. This strategy should
increase the sensitivity (for the detection of im-
pulses) by partially isolating the force transducer
from the input noise of the first stage of amplifi-
cation. ' This technique is potentially important
for improving gravity wave detectors, and per-
haps for a new class of experimental investiga-
tions of quantum measurement theory.

In a recent paper' we proposed a specific sys-
tem which could realize several different modes
of force measurement, including the back-action
evasion mode proposed by Thorne et al. 4 We
carried out a complete classical sensitivity analy-
sis of this system and found that the overall sys-
tem sensitivity for the detection of an impulse
could never be better than what might be called
the standard amplifier limit. ' If we express the
overall system noise as the number of quanta,
n~, that the noise equivalent impulse would trans-
fer to the unexcited oscillator, and if we express
the amplifier noise temperature as a number of
quanta, n„, then the standard amplifier limit is
n~ & pl~.

The purpose of the present paper is to extend
our classical analysis to the back-action evasion
mode of operation. We show that under certain
conditions, one may increase the sensitivity of
the system beyond the standard amplifier limit
by implementing a back-action evasion strategy.
The calculation below includes most of the rele-
vant physical parameters for a realistic system,
and so provides a recipe for the experimental ob-
servation of back-action evasion. Further, it is
possible (but not proven) that our purely classical
calculation will contain all the essential features
of a fully quantum mechanical calculation. If
this is so, simply by setting n~ =(ln2) ' we have
found the conditions to beat the standard quantum
"limit. "

The model system under consideration is the
same as in our earlier paper' and is illustrated
in Fig. 1. It is an accelerometer with electrodes
placed to make a "balanced" three-plate capaci-
tor. This is part of a bridge circuit which has a
resonant readout, the current through which is
sensed by a linear amplifier; we chose a SQUID
for concreteness, but the equivalent circuit may
represent any linear amplifier with a small input
impedance. To operate this in the back-action
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FIG. l. (a) A schematic diagram of an accelerometer. An impulse applied to the outer plates causes the relative
coordinate g to oscillate. (b) The electrical schematic of the bridge circuit used to sense the motion of x. Noise
generators are labeled with italic letters.

evasion mode, we must choose the bridge excita-
tion, or pump voltage, to be

MIp= 2 Yo[COS((d2+ (d~)t+ Cos(&d2 —(tl~)t] = Vp(t),

where ~, and &, are the angular frequencies of
free oscillation for the mechanical and readout
oscillators, respectively. This can be inter-
preted as the coherent superposition of a para-
metric amplifier pump and a parametric up-con-
vertor pump.

From the classical viewpoint, the measure-
ment of a "signal" force F(t) applied to the outer
plates is only limited by the noise sources which
couple in various ways to the system and cause
fluctuations at the amplifier output. We consider
four noise sources: (1) the Langevin force f(t),
which is determined by the mechanical loss co-
efficient Q,

' and the temperature T; (2) the
Johnson noise voltage v&(t) =—2(v, + v, )+v„, which
is determined by the electrical loss coefficient
Q,

' and T; (3) the input noise vi(t) of the ampli-

fier; and (4) the additive noise i(t) of the ampli-
fier, referred to its input. Pump noise has no
effect if the capacitances are perfectly balanced
and we defer a full discussion of this problem to
a future publication. ' In the calculation below,
we find that the last three noise sources enter
the result only as the combination we call the
total electrical noise number n~= [S„(&u,) S—,. (&u, )]'I2/
S~„where 8,. is the double-sided spectral density
of the random variable i, etc. , and v=-vJ+v, .
When S„«S„,we have n~-n„, the amplifier
noise number. The first noise source enters the
result only in the value of the dimensionless pa-
rameter e = (k, T/K~, Q-, )/n, ~.

We have found that the equations of motion for
the relative displacement x(t), and the net charge
on the center capacitor plate q(t), are most eas-
ily solved in the back-action evasion mode by
transforming them into equations for the (real-
valued) components X„X„Q„andQ, of the
"complex amplitudes" of the two oscillators,
also called the in-phase and quadrature ampli-
tudes. They are defined in the classical case by

X,(t)+j X,(t) -=[x(t)+j (u, 'x(t)]exp(+j (u, t),

Q,(t)+j Q,(t) =—[q(t)+j ~, 'q(t)]exp(+j (u, t),
where j -=V'-1. The equations of motion are approximately

—+ X = ~ Q sin(2(a) t) — sin(w t) sin(~ g)
d 1 V f(t)

4pQ) 1 1 m~ 1 p~ 1 p

&&
+

2 X, = — ' Q, [1+cos(2&v,t)]+ cos(a&, t)+ cos(e t)f (t)
2 Ti D 4 JLL(di m(dl P, (di

d 1 —v(t)
~] +

2 Q, = sin((u, t),dt 2T,

&&
+

2 Q2 =
D 4L (X,[1+cos(2&v,t)]+X,sin(2&v, t)]+ cos(v g)(

v(t)
2 1 ~ I

(2)

(5)

(6)

where m is the mass of the outer plates, p, is the reduced mass, D is the mean capacitor gap, L —= L~
+ LI, & = g~+ Bl, &u, =—(2C,L) ' ', ~, = Q, /&u„TQ, /&u„and C, is the mean plate capacitance of one
side.
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We have dropped all the coupling terms which oscillate at high frequencies (-2', ), because their ef-
fect averages nearly to zero over the time scale of interest, but we have not dropped those terms which
oscillate at 2'„ this is appropriate when co, » ~„and the coupling is strong enough to allow the opti-
mum overall system bandwidth to approach ~,. All signal and noise terms have been kept.

To calculate the weakest detectable impulsive signal E(t) =P6(t- tz}, we then followed the procedure
outlined earlier'; this procedure has the disadvantage of obscuring the qualitative behavior of the sys-
tem but has the advantage of making precise the notion of overall system sensitivity. The system of
equations was solved by Fourier transformation and making successive substitutions, beginning with
Eq. (5). The main difference was that the output of the amplifier [j(t)+ i(t)] was demodulated with
cos(tu, t) and filtered to find the apparent value of Q„rather than the apparent x. The noise and signal
content of the apparent Q, was calculated, and then the optimally filtered noise equivalent impulse
(P„')'~' was found. ' The result is expressed as the overall system noise number n, =-(P„')/(2m'k&u, /4u}.

Making a number of approximations' we find the result

3 8y, 8
64 P Py

' = m[sin '((u, t, )] „dy u+ —Py+ —y'+ y' (7)

where we define the coupling coefficient P -=(V,/
D)'(&,/~, )(C,/p(u, '), the impedance ratio y —= (&u, /
co, )(ur, C,)[S„(co,)/S&(&u, )]' ', and the dimensionless
frequency y =—w/~, .

This integral may be evaluated analytically,
with the result that at the optimum arrival times,

:.=I'™"(:;)' I'
where a'—= a+ 3Py/64.

Figure 2 is a plot of the final result calculated
from Eq. (8), with y optimized for each value of
o.'and P. We find that the back-action evasion
mode offers improvement over the resonant
bridge for all o.'and P on the plot. Better yet,
we see that if a «1 and P -1, it is possible to
exceed the standard amplifier limit (nz ~ ns = n„)
by a significant amount.

As an example, take the parameters considered
in our earlier paper, where we found that ~~/~~
= 1 for o. = 10 ' and P = 0.2 (and the optimum y= 2

x 10 '). For the same a and p (and the new op-
timum y =1.6&& 10 '), the back-action evasion
mode improves this to n~/n~ = 0.07.

It has been pointed out by Caves' that our final
expression [Eq. (8)] reduces, in a certain limit,
to one obtained in previous analyses. When the
Brownian noise is much smaller than the back
reaction (i.e., a «3Py/64} and when the ampli-
fier-transducer combination is quantum limited
(i.e., nz = 1) then nz ~ pl~& and y = (~,/~, )(cu,C,).

&&S„(~,)/S~„ thus we see that S„should be as
small as possible. If we can further reduce T
to the point where S„becomes dominated by the
zero-point fluctuations in the circuit (i.e., S„
= h&a, A), then we obtain n, ~ 0.61(&u, w, ) ', which
is essentially Eq. (1.21a) of Ref. 1 and Eq. (33)
of Ref. 10.
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FIG. 2. A plot of the overall system noise number n~
vs the electromechanical coupling coefficient P for a
series of different values of & {& is proportional to the
ratio of mechanical to electrical noise power). The im-
pedance matching coefficient g has been optimized. The
broken line represents the standard amplifier limit
(SAL) which is impossible to exceed with non-back-
action-evasion measurement techniques. The shaded
region represents those combinat. ions of dimensionless
parameters for which the averaging time of the overall
system is less than one cycle of the oscillator and the
approximations used in the calculation probably break
down ~

The major price for this improved performance
is that the response of the system is phase sensi-
tive, similar to a lock-in amplifier; note the fac-
tor sin '(&u, t~) in Eq. (7). There is an important
difference, though; for a back-action evasion
scheme, the phase sensitivity precedes the first
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stage of amplification. '
Why does this measurement strategy work?

The answer may be found by considering that part
of the noise, called the back action, which is
caused by electrical noise perturbing the mechan-
ical oscillator. The electrical noise is the fluc-
tuation of Q, and Q, caused by the noise genera-
tor v. By inspecting the right-hand sides of Eqs.
(3) and (4), we find that the electrical noise has
much less effect on X, than on X„because all
the terms with an oscillating coefficient almost
average to zero. Similarly the response of Q,
to X, is nearly averaged away; so the transducer
serves a dual purpose, first to partially isolate
X, from the back reaction of the amplifier and
second to partially isolate the "interesting" Q,
phase of the transducer output from the back-
reaction-contaminated X, phase of the mechani-
cal oscillator.

Because X, is not completely decoupled from
Q„and because Q, is not completely decoupled
from X„ there is a limit to the improvement
available to this type of back-action evasion. The
residual couplings cause the curves of constant
a (Fig. 2) to become flat for large values of P.
Then the only way to effect further improvement
is to reduce the size of the noise sources, i.e.,
reduce ns or T/Q, .

This paper describes, in purely classical terms,
a method to circumvent the limitations imposed
by a classical noisy amplifier. Whether or not
this has any bearing on the performance of quan-
tum-nondemolition measurements can only be
decided by an analysis of a full quantum version
of our system including the amplifier. This poses
a number of new questions intimately connected
with quantum measurement theory which we do
not propose to solve here. There are assertions
in the literature'" that an analysis such as ours
will give the same limit as a full quantum ver-
sion, provided we let n„-(ln2) . If this is cor-
rect, our result predicts the sensitivity of a phys-
ically realizable device which will be able to beat

the quantum "limit. "
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