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Normal Modes and Symmetries of the Rayleigh-Taylor
Instability in Stratified Fluids
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A formalism is presented for calculating all the normal growth modes of the Rayleigh-
Taylor instability in a stratified fluid of arbitrary profile. The classical instability is
suppressed by the introduction of a finite density gradient at the interface, a technique
applicable to inertial-confinement fusion targets.

PACS numbers: 52.65.+z, 52.35.Py, 47.20.+m

I have studied the growth of Rayleigh-Taylor
instabilities in an arbitrary density profile of
stratified fluids specified by (p„p„p„.. ., p„„p„)
and (t„ t„ t„.. ., t„„t„)as in Fig. l, where p,
is the density of a fluid layer of thickness t,. I
start with boundary conditions reading t, = t„=~.
Other boundary conditions are discussed later.

The primary motivation is an application to
the design of multishell targets for inertial-con-
finement fusion. Substantial work has been done
in this area. ' ' My investigation is geared towards
reduction of Rayleigh- Taylor instabilities by
density gradients4 for which purpose I developed
the formalism described here.

I found that there are as many eigenmodes as
there are interfaces, and that this is just the
right number needed to describe perturbations
having arbitrary initial amplitudes at each inter-
face. The interfaces interact with each other in
the sense that a perturbation at any one interface
influences the growth/oscillation of perturbations
at the other interfaces. The techniques are use-
ful for calculating Rayleigh- Taylor instabilities
in multilayered fluids, and also as a perturbation
technique for continuous profiles. Details and
applications will be given elsewhere; here I
briefly describe how to find those N- j.growth

rates, and report some interesting symmetry
properties discovered in the course of this work.
I also illustrate how the classical growth rate is
reduced by a smooth density gradient or by the
introduction of six antimix layers.

Assuming small-amplitude perturbations, one
finds' normal mode waves growing exponentially
in time e&' (or oscillating if y'& 0) where the
rate(s) y is to be found from the solution of the
differential equation

augmented by proper boundary conditions. Equa-
tion (l) assumes incompressible fluids, constant
acceleration g, no heat transfer, no viscosity,
and no surface tension; 4=2m/A.

~ „and W is
the y-dependent part of the y component of the
perturbed fluid velocity: v,(x, y, r) = W(y)e'
It must be viewed as an eigenfunction associated
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FIG. 1. Stratified density profile.

FIG. 2. The general behavior of y, as functions of
p„under the assumption p&& p3. The minimum (maxi-
mum) value of y+ (y ) occurs at p2= (p&p3)' '. As

p2—~, X~ —+ 1 (Taylor's case). The curves for p3& p&

can be obtained by using z ~ (p&, p» p3) = —
Z ~ {p» p~, p f).
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With the eigenValueS y2.
In each region of constant p, Eq. (1) reduces

to d'W/dy' —k'W = 0 and therefore W(y) is a linear
combination of e' ' and e "', except in regions

!
1 and N where W-e «l'l. Integrating Eq. (1)

across a thin boundary I obtain the jump condition
&(pdW/dy)+ (gk'/y')W& p = 0 at each interface.
W(y) is continuous everywhere, but dW/dy need
not be continuous. With these cogstraints on
II (y) I find that the jump conditions can be writ-
ten as

8;,+ P;, ;+, + +P;;+— 8', — W+, —
2 8;,p c+j.- p~ i a+i ~ ~+i

(2)

where i=1, 2, . . ., N- 1, S,. =sinh(kt, ), T, =tanh(2kt;), and W, denotes the value of W(y) at interface i be-
tween p,. and p, „.

In matrix form these equations read MW=(1/y)W where g= y'/gk,

is an eigencolumn having N-1 components, and

C,
—p

S,(p, —p, )

P2

S.(p. —P.) C2
—p

S,(P, —P,)
0

0 c„,
is an (N —1) && (N —1) tridiagonal matrix. C,. is
the coefficient of W, in Eq. (2). Expanding the
characteristic equation det!M-(1/)i)Il=0 we get

E-1 k-2a„,y +a~ 2X +. . .+ay+a, =0, (4)

a polynomial equation of degree N —1 which in
general has N —1 roots.

The simplest case, N=2, yields the classical
X=(p —P )/(P +P ),

r~..„.~= [gk(p. —P, )l(p. + p, )j". (5)

For N = 3 we find a, = S,(p, —p, )(p, —p, )/p„a,
= —(1+S2+ S,T)(p3 —p, ), a2 = (1+S,T )(p~+ p, )
+ S,(p,p~/p, + p, ), and of course

y'/gk = g= [-a, &(a,' —4a,a, )'i'/2a, j.
In the long-wavelength limit A~ „»t„one mode

grows classically, y -(p, -p, )/(p, +p, ) as ex-
pected. In the short-wavelength limit A,», (t„
the interfaces decouple and the two modes reduce
to x=(p. P.)/(P. +P.) a-d (P. P, )l(P. +P,)-
very special case was considered by Taylor':
p, =p, =0. In this case the two roots in Eq. (6)

!become &1.
Typically one is interested in reducing the

growth rates so we ask: Given p, and p„what
value of p, minimizes the growth modes? The
answer is that p, =(p,p, )'I' will minimize the
larger growth rate y, and maximize the smaller
growth rate X., and this is true for all A.~«. In
Fig. 2 I show y, as functions of p, for finite p,
and p~.

Let me point out an interesting property of the
coefficients a„a» and a2: They do not change
if we let p, - p,p~/p„. and therefore the new pro-
file, which we call the "inverted" profile, has
the same g, as the original profile. For exam-
ple (1, 2, 10) has the same two growth rates as
(1, 5, 10). Note that the profile (p„(p,p,)'I', p, )
is invariant under inversion. Generalizing the
foregoing observation we have:

Inversion Theorem. —The spectrum is invariant
under inversion.

The spectrum refers to the set (y'j of growth
rates associated with a specified density profile
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plus boundary conditions. By inversion I mean

p,. -1/p~„, , i,. t~+, , No overall scale need
be associated with the p,. since the differential
equation is linear in p. If we choose p; -p,p„/
p~„,. then p, and p~ are not changed. For exam-
ple, the profile (1, 3, 10, 6, 2, 30) has the sa, me
five rates as (1, 15, 5, 3, 10, 30).

I have proved the inversion theorem in the case
of an arbitrary stratified profile. I expect that
as N - ~ the theorem will apply to any continu-
ously varying profile as well.

The surprising aspect of the inversion theorem
is that it is valid for al/ wavelengths of perturba-
tion. I emphasize that it is the spectrum of eigen-
values (y') and not the eigenfunctions which are
invariant. No other type of change has repro-
duced the same spectrum in the numerical exam-
ples I have run, which suggests that the inversion
theorem is probably an "if and only if" state-
ment: The spectrum is invariant if and only if
the profile is inverted. I have not attempted to
prove the "only if" part which obviously is harder.

Some care must be exercised if the inversion
theorem is used with other boundary conditions.
At a free boundary dW/dy+(gk'/y')W=O. When
one or both boundaries are free there are still
N- 1 eigenvalues and they can be obtained in the
present formalism by simply setting p, or p~ or
both equal to zero in Eq. (2). If the lower bound-
ary is fixed we set 8', =0 and delete the first
equation. Similarly if the upper boundary is
fixed. There will be only N-2 or N-3 eigenval-
ues depending on whether one or both sides are
fixed.

I can show that any profile between two free
boundaries has y'= +gk as two of its modes. The
remaining N-3 nontrivial eigenvalues are identi-
cal to the N-3 eigenvalues of the inverted profile
between two fixed boundaries. As a result we
have the fixed free theo-rem: If a density is in-

variant under inversion then it has the same
spectrum whether its two boundaries are fixed
or free, except for the two modes y'= +gk which
are present in the free case but not in the fixed
case. Symbolically,

2.0
I I I I

Classical.
I I I

w 1.0

Density profiles which are invariant under in-
version form a rather large class since more
than half of such a profile is arbitrary. For ex-
ample the profile (p„p„p„p„p„p,p, /p„p, p, /p„

seven nontrivial rates between two fixed or two
free boundaries.

To compare with a continuous profile we con-
sider an exponential p = p,e ~', 0 &y &t. This is
an inversion-invariant density profile since
p(t —x) = p,p&/p(y).

It is well known' that an exponential profile
between fixed boundaries at y = 0 and y = t as in
Fig. 3(a) has a discrete spectrum

yf~~'=gk(2ed/[(mn)'+ e'+d'g

where e =kt, d=Pt/2, and m=1, 2, 3, . . . is an
integer. The associated eigenfunctions are

W, ~=const && e 8'~'sin(may/i).

For the case of free boundaries, Fig. 3(b), I
find y& '=gk(2ed/[(mw)'+e'+d']) plus the two
modes +gk. Again m= 1, 2, .. . is an integer.
This is an illustration of the fixed-free theorem:
the nontrivial y f~g are identical with yf~,d. The
associated eigenfunctions are however different:
Compare Eq. (8) with

0.5

(a) (b)

FIG. 3. Exponential density profile between (a) fixed
boundaries; (b) free boundaries; (c) two semi-infinite
Quids. (d) A stepwise approximation to (c) with N = 8
= (6 steps) + (2 boundary fluids).
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FIG. 4. The first two largest growth rates for the
continuous density profile in Fig. 3(c). They approach
~P in the limit kt —~. The dashed lines are the results
of a stepwise approximation to this profile with N = 8
as in Fig. 3(d). I have set p (t)/'p (0) = 10/1 and t = 1 for
scale, hence P = 2.3. The curve labeled Classical" is
(9jp./1 1)1/ 2
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W t,——const x e 6'i'(cos(may/t )—(1/2mzd) (m+'+e —4 ) sin( m tty/t )j.
Finally, I consider an exponential profile between two semi-infinite fluids as in Fig. 3(c) and find

yt&~d' =gk [2ed/(ct'+ e'+ d')],

where n is the solution of

tan(a) = 2o.e/(o'+ d' —e').

Both real and imaginary values of e should be considered in seeking solutions to this transcendental
equation. The spectrum is again discrete. The associated eigenfunctions are

(9)

get&„z -const x e s'~'icos(oy/t)+ n '(e+d) sin(o'y/t)J. (12}

In Fig. 4 I show the first two largest y/vg as functions of kt for the profile shown in Fig. 3(c), and
compare them with our %=8 modeling of that profile [Fig. 3(d)]. From Fig. 4 we see that for the kt 2

the growth rates are substantially reduced from their classical value. This figure should serve only
as an illustration because the boundary layers are assumed infinite, while inertial-confinement fusion
targets have of course finite shell thickness.

Details and applications will be presented elsewhere. '
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