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A formalism is presented for calculating all the normal growth modes of the Rayleigh-
Taylor instability in a stratified fluid of arbitrary profile. The classical instability is
suppressed by the introduction of a finite density gradient at the interface, a technique
applicable to inertial-confinement fusion targets.

PACS numbers: 52.65.+z, 52.35.Py, 47.20.+m

I have studied the growth of Rayleigh-Taylor
instabilities in an arbitrary density profile of
stratified fluids specified by (p,, Py, Py « « «5 POy =15 Py)
and (¢, ¢, ¢, ..., Ly, ty) as in Fig. 1, where p;
is the density of a fluid layer of thickness #,. I
start with boundary conditions reading ¢, =¢y= .
Other boundary conditions are discussed later.

The primary motivation is an application to
the design of multishell targets for inertial-con-
finement fusion. Substantial work has been done
in this area.’”® My investigation is geared towards
reduction of Rayleigh-Taylor instabilities by
density gradients®* for which purpose I developed
the formalism described here.

I found that there are as many eigenmodes as
there are interfaces, and that this is just the
right number needed to describe perturbations
having arbitrary initial amplitudes at each inter-
face. The interfaces interact with each other in
the sense that a perturbation at any one interface
influences the growth/oscillation of perturbations
at the other interfaces. The techniques are use-
ful for calculating Rayleigh-Taylor instabilities
in multilayered fluids, and also as a perturbation
technique for continuous profiles. Details and
applications will be given elsewhere; here I
briefly describe how to find those N-1 growth
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FIG. 1. Stratified density profile,
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rates, and report some interesting symmetry
properties discovered in the course of this work.
I also illustrate how the classical growth rate is
reduced by a smooth density gradient or by the
introduction of six antimix layers.

Assuming small-amplitude perturbations, one
finds® normal mode waves growing exponentially
in time e?" (or oscillating if y2< 0) where the
rate(s) y is to be found from the solution of the
differential equation
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augmented by proper boundary conditions. Equa-
tion (1) assumes incompressible fluids, constant
acceleration g, no heat transfer, no viscosity,
and no surface tension; & =27/ ., and W is
the y-dependent part of the y component of the
perturbed fluid velocity: v,(x, y, 7)=W(y)e 77,
It must be viewed as an eigenfunction associated
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FIG. 2. The general behavior of x, as functions of
P9, under the assumption p;< p3. The minimum (maxi-
mum) value of x, (x.) occurs at p,= (p1p'% As
py—o, x;—* 1 (Taylor’s case). The curves for p3<p,
can be obtained by using X . (01, P2, P3) = =X £(P3, P25 PP
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with the eigenvalues 72, across a thin boundary I obtain the jump condition
In each region of constant p, Eq. (1) reduces AlpdW /dy) +(gk?/y?)WAp =0 at each interface.
to d*W/dy® —k*W =0 and therefore W(y) is a linear ~ W(y) is continuous everywhere, but dW/dy need
combination of ¢ ** and e ®, except in regions not be continuous. With these constraints on
1 and N where W~e “#bl, Integrating Eq. (1) W(y) I find that the jump conditions can be writ-
l ten as
. 1 .
Piﬂl—Pi {—%:"Viq + l:piu <Ti+1 + S_”:>+pi <Ti+sii>] Wi——g.:_i Wi+1} = 'é;_]z‘ Wi, (2)

where i=1,2,...,N—-1, S;=sinh(k¢;), T,=tanh(3kt;), and W, denotes the value of W(y) at interface i be-
tween p; and p, ;. ,
In matrix form these equations read MW =(1/x)W where x=172/gk,

(W)
WvZ
W:
\ Wi J
is an eigencolumn having N — 1 components, and
s N\
= p2
C N L — 0 oo 0
! Sz(pz - pl)
=P G, ——Ps eee 0
M= Sz(pg - pz) Sa(pg - pz) (3)
. o
0 0 e >y . SN o N
- Sp-rloy=py) NI
is an (N - 1) X (N - 1) tridiagonal matrix. C;is |
the coefficient of W, in Eq. (2). Expanding the become =1, o ) )
characteristic equation det|M - (1/x)I1=0 we get Typically one is interested in reducing the
N1 N2 growth rates so we ask: Given p, and p,, what
ApmX " FAyapX T he..t@X+a,=0, (4) value of p, minimizes the growth modes? The
a polynomial equation of degree N -1 which in answer is that p, =(p1p3)1/ 2 will minimize the
general has N -1 roots. larger growth rate x, and maximize the smaller
The simplest case, N=2, yields the classical growth rate x., and this is true for all A .. In
result® x=(p, - p,)/(p,+0,), Fig. 2 I show x, as functions of p, for finite p,
= _ 1/2 and pg
Y tassica = [ £#(02 = £1)/(p; + ) |2 (5) Let me point out an interesting property of the
For N=3 we find a,=S,(05 - 0,)(P, =0,)/P,, a, coefficients a,, a,, and a,: They do not change
==(1+8,+S,L)p;-p,), a,=(1+S,T)ps+p,) if we let p,~ p,p,/p,; and therefore the new pro-
+8,(p,P3/P; +P,), and of course file, which we call the “inverted” profile, has
' the same Y, as the original profile. For exam-
2 —v=[_ 2 _ 1/2 *
vi/gh=x=-a *(a” - 4a,0,)"*/ 2, ]. (6) ple (1, 2, 10) has the same two growth rates as
In the long-wavelength limit A.;;>?,, one mode (1,5, 10). Note that the profile (p,, (P,P)2, P3)
grows classically, x = (p;—p,)/(ps+p,) as ex- is invariant under inversion. Generalizing the
pected. In the short-wavelength limit Apert <K<ty foregoing observation we have:
the interfaces decouple and the two modes reduce Invevsion Theovem.—The spectrum is invariant
to x=(pg=p,)/(ps+p,) and (p, —p,) /(P +p,). A under inversion.
very special case was considered by Taylor:s: The spectrum refers to the set {12} of growth
P, =p;=0. Inthis case the two roots in Eq. (6) rates associated with a specified density profile
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plus boundary conditions. By inversion I mean
P;=~1/Pyi1-is ti=ty41-;. No overall scale need
be associated with the p; since the differential
equation is linear in p. If we choose p; ~p,py/
Py+1-; then p, and p, are not changed. For exam-
ple, the profile (1, 3, 10, 6, 2, 30) has the same
five rates as (1, 15, 5, 3, 10, 30).

I have proved the inversion theorem in the case
of an arbitrary stratified profile. I expect that
as N — « the theorem will apply to any continu-
ously varying profile as well.

The surprising aspect of the inversion theorem
is that it is valid for all wavelengths of perturba-
tion. I emphasize that it is the spectrum of eigen-
values {72} and not the eigenfunctions which are
invariant, No other type of change has repro-
duced the same spectrum in the numerical exam-
ples I have run, which suggests that the inversion
theorem is probably an “if and only if” state-
ment: The spectrum is invariant if and only if
the profile is inverted. I have not attempted to
prove the “only if” part which obviously is harder.

Some care must be exercised if the inversion
theorem is used with other boundary conditions.
At a free boundary dw/dy+(gk?/y?)W=0. When
one or both boundaries are free there are still
N -1 eigenvalues and they can be obtained in the
present formalism by simply setting p, or p, or
both equal to zero in Eq. (2). If the lower bound-
ary is fixed we set W, =0 and delete the first
equation. Similarly if the upper boundary is
fixed. There will be only N -2 or N -3 eigenval-
ues depending on whether one or both sides are
fixed.

I can show that any profile between two free
boundaries has y2=x+ gk as two of its modes. The
remaining N-3 nontrivial eigenvalues are identi-
cal to the N-3 eigenvalues of the inverted profile
between two fixed boundaries. As a result we
have the fixed-free theovem: If a density is in-

A

__/—f

FIG. 3. Exponential density profile between (a) fixed
boundaries; (b) free boundaries; (c) two semi-infinite
fluids. (d) A stepwise approximation to (¢) with N = 8
= (6 steps) + (2 boundary fluids).

variant under inversion then it has the same
spectrum whether its two boundaries are fixed
or free, except for the two modes y2% =z gk which
are present in the free case but not in the fixed
case., Symbolically,

{72} tree= {7 ixea U1 g%, — gk} (M

Density profiles which are invariant under in-
version form a rather large class since more
than half of such a profile is arbitrary. For ex-
ample the profile (0, Py, Py, Ps, Pey PsPs/Pay psps/ps,
psps/pz)’ (tza by by, b5, b5, L, (29 tz) has the same
seven nontrivial rates between two fixed or two
free boundaries. )

To compare with a continuous profile we con-
sider an exponential p=pe®?, 0 <y <t. This is
an inversion-invariant density profile since
p(t=3)=pep¢/pP(y).

It is well known® that an exponential profile
between fixed boundaries at =0 and y=¢ as in
Fig. 3(a) has a discrete spectrum

Ytixea® =gk1 2ed/[(mm) + €2 +d2]}

where e =kt, d=pt/2, and m=1,2,3,... is an
integer. The associated eigenfunctions are

W tixea=cOnSt X e "B/ 2 sin(mmy /t). (8)

For the case of free boundaries, Fig. 3(b), I
find y e =gk{2ed /[(mm)? + 2 +d?]} plus the two
modes + gk, Again m=1,2,... is an integer.
This is an illustration of the fixed-free theorem:
the nontrivial yg.2 are identical with yg,.q9. The
associated eigenfunctions are however different:
Compare Eq. (8) with
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FIG. 4. The first two largest growth rates for the
continuous density profile in Fig. 3(c). They approach
VB in the limit ¢ —~«, The dashed lines are the results
of a stepwise approximation to this profile with N =8
as in Fig. 3(). I have setp(¢)/p(0)=10/1 and ¢t =1 for
scale, hence 8~ 2.3. The curve labeled “Classical” is
(9R/11)1/2,
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W fre=const X e~ By/2Lcos(mmy/t)— (1/2mnd) (n2r? +e2 - d2)sin(mmy/t)}. (9)
Finally, I consider an exponential profile between two semi-infinite fluids as in Fig. 3(c) and find
Yeiua® =gk[ 2ed (@® + e® +d%)], (10)

where a is the solution of _
tan(a) = 2ae /(a? +d? - e?). (11)

Both real and imaginary values of a should be considered in seeking solutions to this transcendental
equation, The spectrum is again discrete. The associated eigenfunctions are

W f1ug =const X e~ 63’/2{cos(ozy/t) +a e +d)sin(ay/t)}. (12)

In Fig. 4 I show the first two largest y/Vg as functions of k¢ for the profile shown in Fig. 3(c), and
compare them with our N =8 modeling of that profile [Fig. 3(d)]. From Fig. 4 we see that for the kt =2
the growth rates are substantially reduced from their classical value. This figure should serve only

as an illustration because the boundary layers are assumed infinite, while inertial-confinement fusion
targets have of course finite shell thickness.

Details and applications will be presented elsewhere.”
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